【题目】如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是( )
A. 4B. 4.6C. 4.8D. 5
科目:初中数学 来源: 题型:
【题目】有两个如图所示的曲尺形框,框和框,用它们分别可以框住下表中的三个数(如图所给示例),
(1)若被框框住的三个数中最小的数为.若这三个数的和是,问的值是否存在?若存在,求出的值;若不存在,说明理由;
(2)若被框框住的三个数中最小的数为.若这三个数的和是,问的值是否存在?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(7,0),C(0,4),点D的坐标为(5,0),点P在BC边上运动. 当△ODP是腰长为5的等腰三角形时,点P的坐标为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角△ABC中,∠ACB=90°,CA=CB,CD为斜边AB上的中线.
(1)如图1,AE平分∠CAB交BC于E,交CD于F,若DF=2,求AC的长;
(2)将图1中的△ADC绕点D顺时针旋转一定角度得到△ADN,如图2,P,Q分别为线段AN,BC的中点,连接AC,BN,PQ,求证:BN=PQ;
(3)如图3,将△ADC绕点A顺时针旋转一定角度到△AMN,其中D的对应点是M,C的对应点是N,若B,M,N三点在同一直线上,H为BN中点,连接CH,猜想BM,MN,CH之间的数量关系,请直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形OABC的顶点A在y轴正半轴上,顶点C在x轴正半轴上,抛物线(a<0)的顶点为D,且经过点A、B.若△ABD为等腰直角三角形,则a的值为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,已知AD=4,AB=3,点P是直线AD上的一点,PE⊥AC,PF⊥BD,E,F分别是垂足,AG⊥BD与点G,
(1) 如图①点P在线段AD上,求PE+PF的值;
(2) 如图②点P在直线AD上,求PEPF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】推理填空
如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,求证:CE∥DF.请完成下面的解题过程.
解:∵BD平分∠ABC,CE平分∠ACB ( 已知 )
∴∠DBC=∠_____,∠ECB=∠_____ ( 角平分线的定义)
又∵∠ABC=∠ACB (已知)
∴∠_____=∠_____.
又∵∠_____=∠_____ (已知)
∴∠F=∠_____
∴CE∥DF_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,A、B、C、D是反比例函数y=(x>0)图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是__________(用含π的代数式表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com