精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,正方形OABC的顶点Ay轴正半轴上,顶点Cx轴正半轴上,抛物线a<0)的顶点为D,且经过点AB.若△ABD为等腰直角三角形,则a的值为___________

【答案】-1

【解析】分析:抛物线的对称轴方程为即点的横坐标为1,ABD为等腰直角三角形,则点的横坐标为2,正方形的边长为2,进而求出点的纵坐标为2+1=3,把点代入抛物线解析式,即可求出的值.

详解:抛物线的对称轴方程为

即点的横坐标为1,

ABD为等腰直角三角形,则点的横坐标为2,正方形的边长为2,

,

代入抛物线解析式得:解得:

故答案为:

点睛:属于二次函数综合体,考查待定系数法求函数解析式,正方形的性质,二次函数的图象与性质等,重点掌握待定系数法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】探究

(1)已知如图1,若ABCDP为平行线内的一点请你判断∠B+P+D= 度,并说明理由.

(2)如图2,若ABCD P1P2为平行线内的两个点,请求出∠B+P1+P2+D= (不需要说明理由)

(3)如图3,如此类推若ABCDP1P2P3P4……Pn为平行线内的n个点,请求出∠B+P1+P2+P3+……+Pn-1+Pn+D= (不需要说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道:有两条边相等的三角形叫做等腰三角形。类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.

1)请你写出一个等对边四边形的名称;

2)如图,在ABC中,点DE分别在ABAC上,设CDBE相交于点O,若∠A=50°.请写出图中其余等于50°的角,并猜想图中哪个四边形为等对边四边形(不需证明);

3)在中,如果∠A是不等于50°的锐角,点DE分别在ABAC上,且.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.

特例感知

①等腰直角三角形 勾股高三角形(请填写或者不是);

②如图1,已知ABC为勾股高三角形,其中C为勾股顶点,CDAB边上的高.若,试求线段CD的长度.

深入探究

如图2,已知ABC为勾股高三角形,其中C为勾股顶点且CACBCDAB边上的高.试探究线段ADCB的数量关系,并给予证明;

推广应用

如图3,等腰ABC为勾股高三角形,其中CDAB边上的高,过点DBC边引平行线与AC边交于点E.若,试求线段DE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线y=x2+2x﹣3x轴相交于AB两点,与y轴交于点CD为顶点.

1)求直线AC的解析式和顶点D的坐标;

2)已知E0 ),点P是直线AC下方的抛物线上一动点,作PRAC于点R,当PR最大时,有一条长为的线段MN(点M在点N的左侧)在直线BE上移动,首尾顺次连接AMNP构成四边形AMNP,请求出四边形AMNP的周长最小时点N的坐标;

3)如图2,过点DDFy轴交直线AC于点F,连接ADQ点是线段AD上一动点,将DFQ沿直线FQ折叠至D1FQ,是否存在点Q使得D1FQAFQ重叠部分的图形是直角三角形?若存在,请求出AQ的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,ACB=90°AC=6BC=8DAB上一动点,过点DDEAC于点EDFBC于点F,连接EF,则线段EF的最小值是(  )

A. 4B. 4.6C. 4.8D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将矩形ABCD沿对角线BD对折,使点C落在处,连接BAD于点EAB=4 BC=6.

求证: (1)AE=E (2)△EBD面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线mnRtABC的顶点A在直线n上,∠C90°ABCB分别交直线m于点D和点E,且DBDE,若∠165°,则∠BDE的度数为(  )

A.115°B.120°C.130°D.145°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.

(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;

(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;

3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当ABC为直角三角形时,写出点B的坐标.

查看答案和解析>>

同步练习册答案