精英家教网 > 初中数学 > 题目详情

【题目】给出下面两个定理:

线段垂直平分线上的点到这条线段两个端点的距离相等;

到一条线段两个端点距离相等的点在这条线段的垂直平分线上.

应用上述定理进行如下推理:

如图,直线l是线段MN的垂直平分线.

A在直线l,AM=AN.(  )

BM=BN,B在直线l.(  )

CMCN,C不在直线l.

这是如果点C在直线l,那么CM=CN, (  )

这与条件CMCN矛盾.

以上推理中各括号内应注明的理由依次是 (  )

A. ②①① B. ②①②

C. ①②② D. ①②①

【答案】D

【解析】解:根据题意,第一个空,由垂直平分线得到线段相等,应用了性质,填

第二个空,由线段相等得点在直线上,应用了判定,填

应用了垂直平分线的性质,填

应所以填①②①故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知一条东西走向的河流,在河流对岸有一点A,小明在岸边点B处测得点A在点B的北偏东30°方向上,小明沿河岸向东走80m后到达点C,测得点A在点C的北偏西60°方向上,则点A到河岸BC的距离为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,E是直线ABCD内部一点,ABCD,连接EAED

(1)探究猜想:

①若∠A=20°,∠D=40°,则∠AED= °

②猜想图①中∠AED,∠EAB,∠EDC的关系,并用两种不同的方法证明你的结论.

(2)拓展应用:

如图②,射线FEl1l2交于分别交于点EFABCDabcd分别是被射线FE隔开的4个区域(不含边界,其中区域ab位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(任写出两种,可直接写答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一条直线上从左往右依次有ABCD四个点.

1)如果线段ACBCBD的长分别为3a-ba+b4a-2b,试求AD两点间的距离;

2)如果将这条直线看作是以点C为原点的数轴(向右为正方向).

①直接写出数轴上与点B距离为a+2b的点所表示的数______

②设线段BD上一动点P所表示的数为x,求|x+a+b|+|x-3a+3b|的值(用含ab的代数表示);

③线段BD上有两个动点PM,点P所表示的数为x,点M所表示的数为y,直接写出式子|x-y|+|x+a+b|+|x-y-6a+4b|的最小值______(用含ab的代数表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20191月份的月历表中,任意框出表中竖列上三个相邻的数(如图,如框出了101724),则这三个数的和可能的是( )

A. 21B. 27C. 50D. 75

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同,他们将一头骆驼前两昼夜的体温变化情况绘制成右图,请根据图象回答:

1)在这个问题中,自变量是什么?因变量是什么?

2)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?

3)第三天12时这头骆驼的体温是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC 中,∠C=90°,∠B=30°,以点 A 为圆心,任意长为半径画弧分别交 AB,AC 于点M N,再分别以 M,N 为圆心,大于MN的长为半径画弧,两弧交于点 P,连接 AP 并延长交 BC 于点D,则下列说法中:①AD ∠BAC 的平分线; D 在线段 AB 的垂直平分线上;③S△DAC:S△ABC=1:2,正确的序号是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)解不等式组,并在数轴上表示出解集:

2)分解因式:

xxy)﹣yyx

②﹣12x3+12x2y3xy2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A,B,C,D,E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A,B两个出入口放入,②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则每玩一次应付费3元.
(1)请用表格或树状图求小美玩一次“守株待兔”游戏能得到小兔玩具的概率;
(2)假设有1000人次玩此游戏,估计游戏设计者可赚多少元?

查看答案和解析>>

同步练习册答案