【题目】如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CFED.设FC与AB交于点H,且A(0,4),C(8,0).
(1)当α=60°时,△CBD的形状是______;
(2)设AH=m
①连接HD,当△CHD的面积等于10时,求m的值;
②当0°<α<90°旋转过程中,连接OH,当△OHC为等腰三角形时,请直接写出m的值.
【答案】(1)等边三角形(2)①m=5;②m的值是4或4或8-4
【解析】
(1)先根据旋转的性质得∠BCD=60°,CB=CD,然后根据等边三角形的判定方法得到△CBD为等边三角形;
(2)①根据△CHD的面积等于10,可得CH=5,利用勾股定理计算BH的长,从而得m的值;
②分三种情况:
i)当OH=CH时,如图2,
ii)当OH=OC=8时,如图3,
iii)当OC=CH=8时,如图4,此时F与H重合,
分别根据勾股定理计算可得结论.
解:(1)∵矩形COAB绕点C顺时针旋转60度的角,得到矩形CFED,
∴∠BCD=60°,CB=CD,
∴△CBD为等边三角形;
故答案为:等边三角形;
(2)①∵四边形CFED是矩形,
∴∠DCH=90°,
∵△CHD的面积等于10,
∴CDCH=10,
∵CD=4,
∴,CH=5,
Rt△BCH中,由勾股定理得:BH===3,
∴AH=8-3=5,
即m=5;
②当△OHC为等腰三角形时,分三种情况:
i)当OH=CH时,如图2,
∵OA=BC,
∴Rt△AOH≌Rt△BCH(HL),
∴AH=BH=4,
即m=4;
ii)当OH=OC=8时,如图3,
∵OA=4,
由勾股定理得:AH===4,
即m=4;
iii)当OC=CH=8时,如图4,此时F与H重合,
则BH=4,
∴m=8-4,
综上,m的值是4或4或8-4.
科目:初中数学 来源: 题型:
【题目】已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.
(1)求证:△ABE≌△BCN;
(2)若N为AB的中点,求tan∠ABE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.
(1)根据上述定义,当m=2,n=3时,如图1,线段BC与线段OA的距离是 ,当m=5,n=3时,如图2,线段BC与线段OA的距离(即线段AB的长)为 .
(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)
(1)点A关于点O中心对称的点的坐标为 ;
(2)点A1的坐标为 ;
(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年3月30日初2018级同学以优异的成绩在双福育才中学完成了中招体育测试,初2019级为了准备明年的体考,对1、2、3、4班进行了体考模拟测试,并对三个班的满分进行了统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.
(1)扇形统计图中2班体育成绩满分人数对应的圆心角是 度;并补全条形统计图;
(2)经过体育老师推荐,这些满分同学中有4名同学(1女3男)的跳远动作十分标准,12班班主任准备从这4名同学中任选2名给自己班级的同学示范标准动作,请利用画树状图或列表的方法求出选出2名同学恰好是一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校中学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:根据以上提供的信息,解答下列问题:
节目 | 人数(名) | 百分比 |
最强大脑 | 5 | 10% |
朗读者 | 15 | b% |
中国诗词大会 | a | 40% |
出彩中国人 | 10 | 20% |
(1)x= ,a= ,b= ;
(2)补全上面的条形统计图;
(3)在喜爱《最强大脑》的学生中,有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加潍坊市组织的竞赛活动,请用树状图或列表法求出所抽取的2名同学恰好是1名男同学和1名女同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数的图象过点A(3,2).
(1)试求该反比例函数的表达式;
(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com