精英家教网 > 初中数学 > 题目详情

【题目】△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.

(1)若∠B=20°,∠C=80°,求∠EAC和∠EAD的大小.

(2)若∠C>∠B,由(1)的计算结果,你能发现∠EAD与∠C﹣∠B的数量关系吗?写出这个关系式,并加以证明.

【答案】(1)4030°;(2)结论:∠EAD=C﹣B),理由见解析.

【解析】

(1)由三角形内角和定理可求得∠BAC的度数,在Rt△ACD中,可求得∠DAC的度数,AE是角平分线,有∠EAC=∠BAC,故∠EAD=∠EAC-∠DAC;

(2)(1)知,用∠C和∠B表示出∠EAD,即可知∠EAD(∠C-∠B)的关系.

解:(1)∵∠B=20°,C=80°,

∴∠BAC=180°﹣B﹣C=80°,

AE平分∠BAC,

∴∠EAC=BAC=40°,

ADBC,

∴∠ADC=90°,

∵∠C=80°,

∴∠CAD=90°﹣C=10°,

∴∠EAD=EAC﹣CAD=40°﹣10°=30°;

(2)结论:∠EAD=C﹣B).

理由:∵三角形的内角和等于180°,

∴∠BAC=180°﹣B﹣C,

AE平分∠BAC,

∴∠EAC=BAC=(180°﹣B﹣C),

ADBC,

∴∠ADC=90°,

∴∠CAD=90°﹣C,

∴∠EAD=EAC﹣CAD=(180°﹣B﹣C)﹣(90°﹣C)

=C﹣B=C﹣B).

故答案为:(1)4030°;(2)结论:∠EAD=C﹣B).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(本题6分)如图,已知△ABC∠C=Rt∠AC<BCDBC上一点,且到AB两点的距离相等.

1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);

2)连结AD,若∠B=37°,求∠CAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E. 求证:AB=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】低碳环保,绿色出行的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150/分的速度骑行一段时间,休息了5分钟,再以m/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y()与时间x(分钟)的关系如图.请结合图象,解答下列问题:

(1)填空:a=________;b=________;m=________.

(2)若小军的速度是 120 /分,求小军第二次与爸爸相遇时距图书馆的距离.

(3)(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100 米,此时 小军骑行的时间为________分钟.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF=(∠BAF+∠C); ③∠FGD=∠ABE+∠C;④∠F=(∠BAC﹣∠C);其中正确的是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:
(1)x2+x=0;
(2)x2﹣4x﹣1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)

(1)画出△ABC向下平移4个单位,再向左平移1个单位得到的△A1B1C1 , 并直接写出C1点的坐标;
(2)作出△ABC绕点A顺时针方向旋转90°后得到的△A2B2C2 , 并直接写出C2点的坐标;
(3)作出△ABC关于原点O成中心对称的△A3B3C3 , 并直接写出B3的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)画出点B关于点A的对称点B1 , 并写出点B1的坐标;
(2)画出△ABC绕点C逆时针旋转90°后的图形△A′B′C,并写出点B的对应点B′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】P是四边形ABCD内一点,PA=PB=PC=PD,又AB=CD,试确定四边形ABCD的形状,并加以证明.

查看答案和解析>>

同步练习册答案