精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,点MN分别在ADBC边上,将矩形ABCD沿MN翻折,点C恰好落在AD边上的点F处,若MD=1,∠MNC=60°,则AB的长为_____.

【答案】

【解析】

由翻折变换可得EFCDMDEM1,∠MNC=∠FNM60°,∠C=∠EFN90°,由平行线的性质可得∠FMN=∠MNC60°,即可求∠EFM30°,由直角三角形的性质可求解.

解:∵将矩形ABCD沿MN翻折,点C恰好落在AD边上的点F处.

EFCDMDEM1,∠MNC=∠FNM60°,∠C=∠EFN90°

ADBC

∴∠FMN=∠MNC60°

∴∠MFN60°

∴∠EFM30°,且∠E90°

EFEM

ABCD

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义一种对正整数n“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:

n=13,则第2018“F”运算的结果是(  )

A. 1 B. 4 C. 2018 D. 42018

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋里装有分别标有汉字的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.

(1)若从中任取一个球,球上的汉字刚好是的概率为多少?

(2)小颖从中任取一球,记下汉字后放回袋中,然后再从中任取一球,求小颖取出的两个球上汉字恰能组成幸福聊城的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在ABC中,BO,CO分别平分∠ABC,ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=1,BEC=2,则以下结论①∠1=22,②∠BOC=32,③∠BOC=90°+1,④∠BOC=90°+2正确的是(  )

A. ①②③ B. ①③④ C. ①④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】出租车司机小张某天上午营运全是在东西走向的政府大道上进行的,如果规定向东为正,向西为负,他这天上午的行程是(单位千米)+15,-3,+16,-11,+10,-12,+4,-15,+16,-18

(1)将最后一名乘客送达目的地时,小张距上午出发点的距离是多少千米?在出发点的什么方向?

(2)若汽车耗油量为06升/千米,出车时,邮箱有油722升,若小张将最后一名乘客送达目的地,再返回出发地,问小张今天上午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【操作发现】

如图,在边长为1个单位长度的小正方形组成的网格中,ABC的三个顶点均在格点上.

(1)请按要求画图:将ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;

(2)在(1)所画图形中,∠AB′B=   

【问题解决】

如图,在等边三角形ABC中,AC=7,点P在ABC内,且∠APC=90°BPC=120°,求APC的面积.

小明同学通过观察、分析、思考,对上述问题形成了如下想法:

想法一:将APC绕点A按顺时针方向旋转60°,得到AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;

想法二:将APB绕点A按逆时针方向旋转60°,得到AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.

请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)

【灵活运用】

如图,在四边形ABCD中,AEBC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),求BD的长(用含k的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.

根据以上信息,网答下列问题

(1)直接写出图中a,m的值;

(2)分别求网购与视频软件的人均利润;

(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC是等边三角形,DAC的中点,FAB边上一点,AF=2BF,E为射线BC上一点,EDF=120°,=____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,DABC的边AB上一点,DEBC交边AC于点E,延长DE至点F,使EFDE,连接BF交边AC于点G,连接CF.

(1)求证:

(2)如果CF2FG·FB,求证:CG·CEBC·DE.

查看答案和解析>>

同步练习册答案