【题目】如图,OB、OC是内部的两条射线, OM平分,ON平分.
(1)若,求的度数;
(2)若,求的度数(用含的代数式表示)
【答案】(1)120°(2)(160x)°
【解析】
(1)利用角平分线的定义可得∠AOM=∠BOM,∠DON=∠CON,易得∠BOM+∠CON=∠AOM+∠DON,利用∠MON∠BOC=∠BOM+∠CON,可得结果;
(2)由角的加减可得∠AOM+∠DON,易得∠BOM+∠CON,再利用∠BOC=∠MON(∠BOM+∠CON)可得结果.
(1)∵∠MON∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,
∴∠BOM+∠CON=80°40°=40°,
∵OM平分∠AOB,ON平分∠COD,
∴∠AOM=∠BOM,∠DON=∠CON,
∴∠AOM+∠DON=40°,
∴∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°;
(2)∵∠AOD=x°,∠MON=80°,
∴∠AOM+∠DON=∠AOD∠MON=(x80)°,
∵∠BOM+∠CON=∠AOM+∠DON=(x80)°,
∴∠BOC=∠MON(∠BOM+∠CON)=80°(x80)°=(160x)°.
科目:初中数学 来源: 题型:
【题目】某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:
组号 | 分组 | 频数 |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值;
(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;
(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):
编号 类型 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 | 十 |
甲种电子钟 | 1 | -3 | -4 | 4 | 2 | -2 | 2 | -1 | -1 | 2 |
乙种电子钟 | 4 | -3 | -1 | 2 | -2 | 1 | -2 | 2 | -2 | 1 |
(1) 计算甲、乙两种电子钟走时误差的平均数;
(2) 计算甲、乙两种电子钟走时误差的方差;
(3) 根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别为AB、BC的中点,连接CE、DF,将△CBE沿CE对折,得到△CGE,延长EG交CD的延长线于点H。
(1)求证:CE⊥DF;
(2)求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市公共交通收费如下:
公交票价 | ||
里程(千米) | 票价(元) | 刷卡优惠后付款(元) |
0-10 | 2 | 1 |
10-15 | 3 | 1.5 |
15-20 | 4 | 2 |
20-25 | 5 | 2.5 |
25-30 | 6 | 3 |
以后每增加5千米 | 增加1元 | 增加0.5元 |
地铁票价 | |
里程(千米) | 票价(元) |
0-6 | 3 |
6-12 | 4 |
12-22 | 5 |
22-32 | 6 |
32-52 | 7 |
52-72 | 8 |
以后每增加20千米 | 增加1元 |
(公交票价10千米(含)内2元,不足10千米按10千米计算,其他里程类同;地铁票价6千米(含)内3元,不足6千米按6千米计算,其他里程类同)
(1)张阿姨周日去看望父母,可是张阿姨忘了带一卡通,请你帮助张阿姨思考两个问题:
①若到父母家无论乘公交车还是地铁距离都是24千米,选择哪种公交交通工具费用较少?
②若只用10元钱乘坐公交或地铁,选择哪种公共交通工具乘坐的里程更远?
(2)张阿姨下周日计划使用一卡通刷卡乘公共交通到景点游玩,若里程大于35千米且小于120千米,公交、地铁均可直达.请问:选择公交还是选择地铁出行更省钱?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D在BC上,DE⊥AB于点E,DF⊥BC交AC于点F,BD=CF,BE=CD.若∠AFD=145°,则∠EDF=_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现:如果每件童装降价1元,那么平均可多售出2件,设每件童装降价x元(x>0)时,平均每天可盈利y元.
(1)写出y与x的函数关系式;
(2)根(1)中你写出的函数关系式,解答下列问题:
①当该专卖店每件童装降价5元时,平均每天盈利多少元?
②当该专卖店每件童装降价多少元时,平均每天盈利400元?
③该专卖店要想平均每天盈利600元,可能吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.
(1)求甲、乙两种礼品的单价各为多少元?
(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com