精英家教网 > 初中数学 > 题目详情
如图①,A、B两点同时从原点O出发,点A以每秒m个单位长度沿x轴的正方向运动,点B以每秒n个单位长度沿y轴正方向移动.
(1)若
m+2n-5
+
2m-n
=0,试分别求出1秒后,A、B两点的坐标;
(2)如图②,∠ABO和∠BAO的平分线相交于点P,试问:在点A、B运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.
考点:三角形内角和定理,非负数的性质:算术平方根,解二元一次方程组,坐标与图形性质,三角形的外角性质
专题:
分析:(1)根据二次根式的和为0得出关于m、n的方程组,求出m、n的值即可;
(2)求出∠OAB+∠OBA的值,求出∠PAB+∠PBA的值,根据三角形内角和定理求出即可.
解答:解:(1)∵若
m+2n-5
+
2m-n
=0,
∴m+2n-5=0,2m-n=0,
∴m=1,n=2,
∴OA=1,OB=2,
∴A(1,0),B(0,2);

(2)不变,
理由是:∵∠AOB=90°,
∴∠OBA+∠OAB=90°,
∵AP、BP分别平分∠OAB和∠OBA,
∴∠PAB=
1
2
∠BAO,∠PBA=
1
2
∠OBA,
∴∠PAB+∠PBA=45°,
∴∠APB=180°-45°=135°,
即不发生变化,是135°.
点评:本题考查了三角形内角和定理,角平分线定义,二次根式的性质,解二次一元方程组的应用,题目比较典型,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,双曲线y1=
k1
x
 
与直线y2=k2x+5交于点P(1,4),Q(4,m),另一直线y3=k3x也经过点Q.
(1)求上述反比例函数和直线PQ的函数表达式;
(2)设该直线与x轴,y轴分别相交于A,B两点,连接OP、OQ,求△OPQ的面积;
(3)结合图象,直接写出当k2x+5>
k1
x
>k3x时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:D是以AB为直径的圆O上任意一点,且不与点A、B重合,点C是弧BD的中点,作CE∥AB,交AD或其延长线于E,连接BE交AC与G,AE=CE,过C作CM⊥AD交AD延长线于点M,MC与⊙O相切,CE=7,CD=6,求EG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

一个人有3个油瓶,第一个油瓶能装10升油,第二个能装7升油,第三个能装3升油,第一个油瓶装得满满十升油.另外两个油瓶是空的.请让这十升油一半在7升油的油瓶里,另一半留在十升的油瓶里.提示:不能用刻度勺去装.只能在几个油瓶里的油倒来倒去.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算(-2a23÷2a3的结果是(  )
A、-3a3
B、-3a2
C、-4a2
D、-4a3

查看答案和解析>>

科目:初中数学 来源: 题型:

若关于x,y的方程组
x+2y=3m
x-y=9m
的解与方程3x+2y=17的一个解相同,则m=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

多项式3a2b3-a3b+a4b+ab2-5是
 
 
项式,四次项是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若x+y=5,xy=6,则x2+y2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=-x2+15的顶点坐标是
 

查看答案和解析>>

同步练习册答案