精英家教网 > 初中数学 > 题目详情

【题目】某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.

(1)若每件衬衫降价4元,商场每天可盈利多少元?

(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?

【答案】11008;(220

【解析】

1)降价4元时,根据题意分别求出单件利润和销量,再根据销售利润问题的等量关系:单件利润×销量=总利润,可求出总利润;

2)设降价x元,然后根据题意找出单件利润和销量的表达式,再根据销售利润问题的等量关系:单件利润×销量=总利润,列出方程求解,最后根据题意舍去不符合题意的解.

1)降价4元时,每件盈利为40-4=36元,销量为件,

∴总盈利36×28=1008.

2)设降价x元,由题意得

化简得,解得

要尽量减少库存,则取

所以平均每天要盈利1200元,每件衬衫应降价20元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解下列方程。

1x2-5x+6=0

2(2x1)(x4)5.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数与一次函数在一个平面直角坐标系中.

1)若二次函数的图象顶点在一次函数上,求的值;

2)若当时,二次函数的最小值为,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线与直线的图象如图所示,则下列说法:

①当0<x<2时, y1>y2y1x的增大而增大的取值范围是x<2;③使得y2大于4x值不存在;④若y1=2,则x=2﹣x=1.其中正确的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=-x2+4x+5

(1)用配方法将y=-x2+4x+5化成y=axh2+k的形式;

(2)指出抛物线的开口方向、对称轴和顶点坐标;

(3)若抛物线上有两点Ax1,y1),B(x2,y2),如果x1>x2>2,试比较y1y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则O的半径为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,⊙C的半径为rP是与圆心C不重合的点,点P关于⊙C的发散点的定义如下:若在射线CP上存在一点P′,满足CPCP′3r,则称P′为点P关于⊙C的发散点.下图为点P及其关于⊙C的发散点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′0.

根据上述材料,请你解决以下问题:

1)当⊙O的半径为1时,

①在点关于⊙O的发散点的是点 ;其对应发散点的坐标是

②点P在直线上,若点P关于⊙O的发散点P′存在,且点P′不在x轴上,求点P的横坐标m的取值范围;

2)⊙C的圆心Cx轴上,半径为1,直线x轴、y轴分別交于点AB.若线段AB上存在点P,使得点P关于⊙C的发散点P′在⊙C的内部,请直接写出圆心C的横坐标n的取值范围 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点BC重合),垂直于AE的一条直线MN分别交ABAECD于点MPN.判断线段DNMBEC之间的数量关系,并说明理由.

问题探究:在问题情境的基础上,

1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;

2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将APN沿着AN翻折,点P落在点P'处.若正方形ABCD的边长为4 AD的中点为S,求P'S的最小值.

问题拓展:如图4,在边长为4的正方形ABCD中,点MN分别为边ABCD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点AC'NAD于点F.分别过点AFAGMNFHMN,垂足分别为GH.若AG,请直接写出FH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ACD三点的圆的圆心为E,过BE两点的圆的圆心为D,如果∠A=60°,那么∠B________.

查看答案和解析>>

同步练习册答案