精英家教网 > 初中数学 > 题目详情
7.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=$\frac{1}{x}$的图象上.若点B在反比例函数y=$\frac{k}{x}$的图象上,则k的值为(  )
A.2B.-2C.4D.-4

分析 要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:$\frac{BD}{OC}$=$\frac{OD}{AC}$=$\frac{OB}{OA}$=2,然后用待定系数法即可.

解答 解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D,
设点A的坐标是(m,n),则AC=n,OC=m,
∵∠AOB=90°,
∴∠AOC+∠BOD=90°,
∵∠DBO+∠BOD=90°,
∴∠DBO=∠AOC,
∵∠BDO=∠ACO=90°,
∴△BDO∽△OCA,
∴$\frac{BD}{OC}$=$\frac{OD}{AC}$=$\frac{OB}{OA}$,
∵OB=2OA,
∴BD=2m,OD=2n,
因为点A在反比例函数y=$\frac{1}{x}$的图象上,则mn=1,
∵点B在反比例函数y=$\frac{k}{x}$的图象上,B点的坐标是(-2n,2m),
∴k=-2n•2m=-4mn=-4.
故选D.

点评 本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.某小组整理了“有理数”一章的结构图,如图所示,则你认为A表示数轴;B表示乘方.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.写出一个关于x的一元一次方程,使它的解为x=-1,这个方程是x+1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某学校组织学生到离校20千米的国家博物馆进行实践教育活动,同学们统一从学校乘车前往.小明在去学校的途中遇上堵车,比同学们晚15分钟从学校出发,由他的家长开车沿相同路线送小明赶往国家博物馆,结果小明和同学们同时到达.已知小明的速度是同学们的速度的2倍,求同学们的速度是每小时多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.把8.3°用度、分、秒表示为8°18′0″.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知抛物线y=ax2+bx+3经过点B(-1,0)、C(3,0),交y轴于点A,
(1)求此抛物线的解析式;
(2)抛物线第一象限上有一动点M,过点M作MN⊥x轴,垂足为N,请求出MN+2ON的最大值,及此时点M坐标;
(3)抛物线顶点为K,KI⊥x轴于I点,一块三角板直角顶点P在线段KI上滑动,且一直角边过A点,另一直角边与x轴交于Q(m,0),请求出实数m的变化范围,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A、B、C三点的抛物线l上,
(1)求抛物线l的解析式;
(2)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求点P的坐标;
(3)若抛物线l上有且只有三个点到直线AC的距离为n,求出n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在Rt△ABC中,AB=AC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC的中点上,将三角板绕点O旋转.
(1)如图1,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系(无需证明)
(2)如图2,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的结论是否成立,若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,小明想测量院子里一棵树的高度,在某一时刻,他站在该树的影子上,前后移动,直到他本身的影子的顶端正好与树影的顶端重叠.此时,他与该树的水平距离2m,小明身高1.5m,他的影长是1.2m,那么该树的高度为4m.

查看答案和解析>>

同步练习册答案