【题目】以下列各组数为三边的三角形中不是直角三角形的是
A. 9、12、15 B. 41、40、9 C. 25、7、24 D. 6、5、4
科目:初中数学 来源: 题型:
【题目】如图,半圆O直径DE=12,Rt△ABC中,BC=12,∠ACB=90°,∠ABC=30°.半圆O从左到右运动,在运动过程中,点D,E始终在直线BC上,半圆O在△ABC的左侧.
(1)当△ABC的一边与半圆O相切时,请画出符合题意得图形.
(2)当△ABC的一边与半圆O相切时,如果半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分,求重叠部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是
A. 88°,108°,88°. B. 88°,104°,108°.
C. 88°,92°,92° . D. 88°,92°,88°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【问题背景】
已知:l1∥l2∥l3∥l4,平行线l1与l2、l2与l3、l3与l4之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2,我们把四个顶点分别在l1、l2、l3、l4这四条平行线上的四边形称为“格线四边形”.
【问题探究】
(1)如图1,正方形ABCD为“格线四边形”,则正方形ABCD的边长为 .
(2)矩形ABCD为“格线四边形”,其长:宽=2:1,求矩形ABCD的宽.
【问题拓展】
(3)如图1,EG过正方形ABCD的顶点D且垂直l1于点E,分别交l2,l4于点F,G,将∠AEG绕点A顺时针旋转30°,得到∠AE′D′(如图2),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′C′,分别在直线l2,l4上,求菱形AB′C′D′的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,AB=2cm,动点P、Q分别从点A、C同时出发,运动速度均为1cm/s,点P从点A出发,沿A→B运动,到点B停止,点Q从点C出发,沿C→A运动,到点A停止,连接BQ、CP相交于点D,设点P的运动时间为x(s).
(1)AP= (用含x的式子表示);
(2)求证:△ACP≌△CBQ;
(3)求∠PDB的度数;
(4)当CP⊥AB时,直接写出x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E.
(1)如图1,连接EC,求证:△EBC是等边三角形;
(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;
(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=BC,∠ABC=45°,AD是BC边上的高,E是AD上一点,ED=CD,连接EC,
求证:
(1)△ADC≌△BDE;
(2)EA=EC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若(x+2)(2x-n)=2x2+mx-2,则( )
A. m=3,n=1; B. m=5,n=1; C. m=3,n=-1; D. m=5,n=-1;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com