精英家教网 > 初中数学 > 题目详情

【题目】如图,ACO的直径,弦BDAOE,连接BC,过点OOFBCF,若BD16cmAE4cm

1)求O的半径;

2)求OF的长.

【答案】(1)10;(2)OF2

【解析】

1)连接OB,设半径为R OER4,再由垂径定理求得BE,根据勾股定理求出R即可;(2)根据勾股定理求得BC,证明△CFO∽△CEB,根据相似三角形的性质列出比例式,计算即可

解:(1)连结OB,设半径为R OER4

AC⊙O的直径,弦BDACE

BEDE8

Rt△BOE OE2BE2OB2

∴ (R4)282R2

解得R10

(2) 根据勾股定理得 BC8

可证COF∽△CBE

OF2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边CDRtEFG的直角边EF重合,将正方形ABCD1cm/s的速度沿FE方向移动,在移动过程中,边CD始终与边EF重合(移动开始时点C与点F重合).连接AE,过点CAE的平行线交直线EG于点H,连接HD.已知正方形ABCD的边长为1cmEF=4cm,设正方形移动时间为xs),线段EH的长为ycm),其中0≤x≤2.5

1)当x=2时,AE的长为

2)试求出y关于x的函数关系式,并求出EHDADE的面积之差;

3)当正方形ABCD移动时间x= 时,线段HD所在直线经过点B

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:

(1)每千克核桃应降价多少元?

(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,OA1交AB于点E,OC1交BC于点F.

(1)求证:△AOE≌△BOF;

(2)如果两个正方形的边长都为a,那么正方形A1B1C1OO点转动,两个正方形重叠部分的面积等于多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠B=∠C30°,点OBC边上一点,以点O为圆心、OB为半径的圆经过点A,与BC交于点D.

试说明AC与⊙O相切;

,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的半径为5,两条平行弦ABCD的长分别为68,求这两条平行弦ABCD之间的距离(  )

A.3B.4C.17D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC内接于⊙OP是弧AB上任一点(点P不与点AB重合),连接APBP,过点CCMBPPA的延长线于点M

1)求∠APC的度数.

2)求证:PCM为等边三角形.

3)若PA1PB3,求PCM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,H是对角线BD的中点,延长DCE,使得DE=DB,连接BE,作DFBEBC于点G,交BE于点F,连接CHFH,下列结论:(1HC=HF;(2DG=2EF;(3BE·DF=2CD2;(4SBDE=4SDFH;(5HFDE,正确的个数是(

A.5B.4C.3D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:

摸棋的次数n

100

200

300

500

800

1000

摸到黑棋的次数m

24

51

76

124

201

250

摸到黑棋的频率(精确到0.001)

0.240

0.255

0.253

0.248

0.251

0.250

(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是   ;(精确到0.01)

(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由

查看答案和解析>>

同步练习册答案