为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少?
| 阶梯 | 电量 | 电价 |
| 一档 | 0﹣180度 | 0.6元/度 |
| 二档 | 181﹣400度 | 二档电价 |
| 三档 | 401度及以上 | 三档电价 |
科目:初中数学 来源: 题型:
如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(0,3),且当x=1时,y有最小值2.
(1)求a,b,c的值;
(2)设二次函数y=k(2x+2)﹣(ax2+bx+c)(k为实数),它的图象的顶点为D.
①当k=1时,求二次函数y=k(2x+2)﹣(ax2+bx+c)的图象与x轴的交点坐标;
②请在二次函数y=ax2+bx+c与y=k(2x+2)﹣(ax2+bx+c)的图象上各找出一个点M,N,不论k取何值,这两个点始终关于x轴对称,直接写出点M,N的坐标(点M在点N的上方);
③过点M的一次函数y=﹣
x+t的图象与二次函数y=ax2+bx+c的图象交于另一点P,当k为何值时,点D在∠NMP的平分线上?
④当k取﹣2,﹣1,0,1,
2时,通过计算,得到对应的抛物线y=k(2x+2)﹣(ax2+bx
+c)的顶点分别为(﹣1,﹣6,),(0,﹣5),(1,﹣2),(2,3),(3,10),请问:顶点的横、纵坐标是变量吗?纵坐标是如何随横坐标的变化而变化的?![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
某校数学兴趣小组要测量西山植物园蒲宁之珠的高度.如图,他们在
点A处测得蒲宁之珠最高点C的仰角为45°,再往蒲宁之珠方向前进至点B处测得最高点C的仰角为56°,AB=62m,根据这个兴趣小组测得的数据,则蒲宁之珠的高度CD约为 m.(sin56°≈0.83,tan56°≈1.49,结果保留整数)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为 米(结果精确到0.1米,参考数据:
=1.41,
=1.73).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.
[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.
根据“边角边”,可证△CEH≌ ,得EH=ED.
在Rt△HBE中,由 勾股 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是 .
[实践运用]
(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2
,运用小聪同学探究的结论,求正方形的边长及MN的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
一个批发商销售成本为
20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
| 售价x(元/千克) | … | 50 | 60 | 70 | 80 | … |
| 销售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com