【题目】如图,在平面直角坐标系中,点为坐标原点,直线与轴、轴分别交于点、,点在轴负半轴上,且,把沿轴翻折,使点落在轴上的点处,点为线段上一点,连接交轴于点,若,点的纵坐标为,则直线的解析式为__________.
【答案】
【解析】
先求出点A、B坐标,于是可得OC的长,然后在Rt△AOC中根据三角函数的定义即可求出∠ACB=60°,延长AC到Q,使CQ=CB,连接BP,过D作DK∥y轴交CQ于K,如图,根据SAS可证△CBD≌△CQD,从而得∠CBD=∠Q,BD=DQ,根据等量代换和等腰三角形的性质可得∠DPQ=∠CBD,然后根据三角形的内角和定理可得∠BDP=∠ACB=60°,由此可得△PBD是等边三角形,进一步即可推得△DCK也是等边三角形,于是有DK=CK=CD=6m,根据SAS可证△BDC≌△PDK,从而得PK=BC=9m,再根据平行线分线段成比例定理即可列方程求出m的值,进一步即可求得D点坐标,然后根据待定系数法即可求出结果.
解:在中,
令y=0,则,解得:x=﹣3m,令x=0,则y=6m,
∴点A(﹣3m,0),B(0,6m),
∴AO=3m,OB=6m,
∵OB=2OC,∴OC=OB=3m,
在Rt△AOC中,∵tan∠ACB=,
∴∠ACB=60°,∴∠OAC=30°,
如图,延长AC到Q,使CQ=CB,连接BP,过D作DK∥y轴交CQ于K,
∵∠ACB=∠BCD=60°,∴∠DCQ=60°,
∴∠BCD=∠DCQ,
∵CD=CD,
∴△CBD≌△CQD(SAS),
∴∠CBD=∠Q,BD=DQ,
∵BD=PD,∴PD=DQ,
∴∠DPQ=∠Q,
∴∠DPQ=∠DBC,
∵∠CEP=∠DEB,
∴∠PCB=∠BDP=60°,
∵BD=PD,∴△PBD为等边三角形,
∵DK∥y轴,∴∠DKC=∠ACB=60°,
∵∠DCK=60°,∴△DCK是等边三角形,
∴DK=CK=CD=6m,
∵∠BDP=∠CDK=60°,
∴∠BDC=∠PDK,
∵BD=PD,CD=DK,
∴△BDC≌△PDK(SAS),
∴PK=BC=9m,∴PC=3m,
∵点E的纵坐标为﹣1,∴OE=1,
∴CE=3m﹣1,
∵CE∥DK,∴,
∴,解得:m=1,
∴D(3,0),E(0,﹣1),
设直线PD的解析式为y=kx+b,
∴,解得:,
∴直线PD的解析式为.
科目:初中数学 来源: 题型:
【题目】某饰品店老板去批发市场购买新款手链,第一次购手链共用1000元,将该手链以每条定价28元销售,并很快售完,所得利润率高于30%.由于该手链深得年轻人喜爱,十分畅销,第二次去购进手链时,每条的批发价已比第一次高5元,共用去了1500元,所购数量比第一次多10条.当这批手链以每条定价32元售出80%时,出现滞销,便以5折价格售完剩余的手链.现假设第一次购进手链的批发价为x元/条.
(1)用含x的代数式表示:第一次购进手链的数量为 条;
(2)求x的值;
(3)不考虑其他因素情况下,试问该老板第二次售手链是赔钱了,还是赚钱了?若赔钱,赔多少?若赚钱,赚多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.
(1)求该店有客房多少间?房客多少人?
(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠1=∠2,AD=AE,∠B=∠ACE,且B、C、D三点在一条直线上,
(1)试说明△ABD与△ACE全等的理由;
(2)如果∠B=60°,试说明线段AC、CE、CD之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有以下命题:
①如果三角形的三个内角的度数比是,那么这个三角形是直角三角形;
②如果不等式的解集为,那么;
③若将一次函数的图象向上平移3个单位,则平移所得直线不经过第四象限;
④命题“对角线互相垂的四边形是菱形”的逆命题.
则真命题的个数为( ).
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有三条边相等的四边形称为三等边四边形.
(1)如图①,平行四边形中,对角线平分,将线段绕点旋转一个角度至,连接.
①求证:四边形是三等边四边形;
②如图②,连接,.求证:;
(2)如图,在(1)的条件下,设与交于点,,,,求以,和为边的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.
(1)试判断FG与⊙O的位置关系,并说明理由;
(2)若AC=6,CD=5,求FG的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com