精英家教网 > 初中数学 > 题目详情

【题目】某快递公司每天上午9001000为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为__________

【答案】920

【解析】

分别求出甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数关系式,求出两条直线的交点坐标即可.

解:设甲仓库的快件数量y(件)与时间x(分)之间的函数关系式为:y1=k1x+40,根据题意得60k1+40=400,解得k1=6
y1=6x+40

设乙仓库的快件数量y(件)与时间x(分)之间的函数关系式为:y2=k2x+240,根据题意得60k2+240=0,解得k2=-4
y2=-4x+240

联立,解得

∴此刻的时间为920

故答案为:920

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线yax2+bx+30a0)与x轴交于点A10)和点B(﹣30),与y轴交于点C

1)求抛物线的解析式;

2)设抛物线的对称轴与x轴交于点M,请问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由;

3)在抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,对角线ACBD相交于点O,过点O作直线EFBD,且交AC于点E,交BC于点F,连接BEDF,且BE平分∠ABD.

1)①求证:四边形BFDE是菱形;②求∠EBF的度数.
2)把(1)中菱形BFDE进行分离研究,如图2GI分别在BFBE边上,且BG=BI,连接GDHGD的中点,连接FH,并延长FHED于点J,连接IJIHIFIG.试探究线段IHFH之间满足的数量关系,并说明理由;
3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EFDE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AGGEEC三者之间满足的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,以AB为直径的⊙OBC于点D,交AC于点E,连结DE,且BDDE,过点BBPDE,交⊙O于点P,连结OP

1)求证:ABAC

2)若∠A30°,求∠BOP的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解学生在假期中的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目“进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.

1m__________n__________

2)扇形统计图中科学类”所对应扇形圆心角度数为__________°

3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在中,,点分别在边上,,连结,点分别为的中点.

1)观察猜想图1中,线段的数量关系是_______,位置关系是_______

2)探究证明把绕点逆时针方向旋转到图2的位置,连结,判断的形状,并说明理由;

3)拓展延伸把绕点在平面内自由旋转,若,请直接写出面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某宾馆有120间标准房,当每间标准房每天价格为100元时,每天都客满,市场调查表明每间标准房每天价格在100~180元之间(含100元,180元)浮动时,每提高5元,日均入住数减少3间,每间标准房如果有人入住每天各种费用40元,如果没人入住每天需各种费用10元,宾馆将每间标准房每天价格提高到多少元时,客房的日收益额最大?(注:收益额营业收入各种费用)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,抛物线yax2bxc (a≠0)的顶点为M (19), 经过抛物线上的两点A(3,-7)B (3, m)的直线交抛物线的对称轴于点C

(1)求抛物线的解析式和直线AB的解析式;

(2)在抛物线上是否存在点D,使得SDAC2SDCM?若存在,求出点D的坐标;若不存在,请说明理由.

(3)若点P在抛物线上,点Qx轴上,当以点AMPQ为顶点的四边形是平行四边形时,直接写出满足足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,于点,过点与边相切于点,交于点的直径.

1)求证:

2)若,求的长.

查看答案和解析>>

同步练习册答案