精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在平面真角坐标系中,点AB的坐标分别为Aa0),Bb0),且ab满足|a+1|+0,点C的坐标为(03).

1)求ab的值及SABC

2)若点Mx轴上,且SACMSABC,试求点M的坐标.

【答案】1a=﹣1b5SABC9;(2M的坐标为(10)或(﹣30

【解析】

1)由|a+1|+0结合绝对值、算术平方根的非负性即可得出ab的值,再结合三角形的面积公式即可求出SABC的值;

2)设出点M的坐标,找出线段AM的长度,根据三角形的面积公式结合SACMSABC,即可得出点M的坐标.

解:(1)由|a+1|+0,|a+1|≥0,0

a+10b50

a=﹣1b5

∴点A(﹣10),点B50).

又∵点C03),

AB=|﹣15|=6CO3

SABCABCO×6×39

2)设点M的坐标为(x0),则AM=|x﹣(﹣1)|=|x+1|,

又∵SACMSABC

AMOC×9

|x+133

∴|x+1|=2

x+1=±2

解得:x1或﹣3

故点M的坐标为(10)或(﹣30).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EF分别是BCCD边上的点,∠EAF45°

1)如图(1),试判断EFBEDF间的数量关系,并说明理由;

2)如图(2),若AHEF于点H,试判断线段AHAB的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016四川省攀枝花市)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.

(1)求每吨水的政府补贴优惠价和市场价分别是多少?

(2)设每月用水量为x吨,应交水费为y元,请写出yx之间的函数关系式;

(3)小明家5月份用水26吨,则他家应交水费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知两条射线OMCN,动线段AB的两个端点AB分别在射线OMCN上,且∠C=OAB=108°,F在线段CB上,OB平分∠AOF

1)请在图中找出与∠AOC相等的角,并说明理由;

2)判断线段ABOC 的位置关系是什么?并说明理由;

3)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,点A41),B11C45),D6,﹣3),E(﹣25

1)在坐标系中描出各点,画出△AEC,△BCD

2)求出△AEC的面积(简要写明简答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE90°,点ADE在同一直线上,若AE24DE17

1)求证:△CAD≌△CBE

2)求线段AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC为O的直径,B为O上一点,ACB=30°,延长CB至点D,使得CB=BD,过点D作DEAC,垂足E在CA的延长线上,连接BE.

(1)求证:BE是O的切线;

(2)当BE=3时,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AB 6,点CD在线段AB上,AC DB 1P是线段CD上的动点,分别以APPB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.

根据图示填写下表:

平均数

中位数

众数

A

______

85

______

B

85

______

100

结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;

计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.

查看答案和解析>>

同步练习册答案