精英家教网 > 初中数学 > 题目详情

【题目】如图,边长为1的正方形EFGH在边长为4的正方形ABCD所在平面上移动,始终保持EF//AB,CK=1.线段KG的中点为MDH的中点为N,则线段MN的长为 ( ).

A. B. C. D.

【答案】D

【解析】

因为题目没有确定正方形EFGH的位置,所以我们可以将正方形EFGH的位置特殊化,使点H与点A重合,重新画出图形,这样有利于我们解题,过点MMOEDO,则可得出OM是梯形FEDC的中位线,从而可求出ON、OM,然后在RtMON中利用勾股定理可求出MN.

如图,将正方形EFGH的位置特殊化,使点H与点A重合,过点MMOEDO,则MO是梯形FEDC的中位线,

EO=OD=,MO=(EF+CD)=

∵点N、M分别是AD、FC的中点,

AN=ND=2,

ON=OD-ND=-2=

RtMON中,MN2=MO2+ON2

MN=

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)图象如图所示,现有下列结论:①b2﹣4ac>0;②a>0;③b>0;④c>0;⑤4a+2b+c<0,则其中结论正确的个数是(
A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形中,边上的高是边上一点.现有一动点 沿着折线运动,在上的速度是每秒4个单位长度,在上的速度是每秒2个单位长度,则点从点到点的运动过程至少需_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一根长为6cm的木棍分成两段,每段长分别为a,b(单位:cm)且a,b都为正整数.在直角坐标系中以a,b的值,构成点A(a,b).那么点A落在抛物线y=﹣x2+6x﹣5与x轴所围成的封闭图形内部(如图,不含边界)的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B'点,AE是折痕。

(1)试判断B'E与DC的位置关系并说明理由。

(2)如果∠C=130°,求∠AEB的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠B=60°,AB=1,延长AD到点E,使DE=AD,延长CD到点F,使DF=CD,连接AC、CE、EF、AF.

(1)求证:四边形ACEF是矩形;

(2)求四边形ACEF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,AB=8,BC=4.在AD上取一点E,AE=1,点FAB边上的一个动点,以EF为一边作菱形EFMN,使点N落在CD边上,点M落在矩形ABCD内或其边上.若AF=x,BFM的面积为S.

(1)当四边形EFMN是正方形时,求x的值;

(2)当四边形EFMN是菱形时,求Sx的函数关系式;

(3)x= 时,BFM的面积S最大;当x= 时,BFM的面积S最小;

(4)BFM的面积S由最大变为最小的过程中,请直接写出点M运动的路线长:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过AADED于点D,过BBEED于点E.
求证:BEC≌△CDA;
(模型应用)
(2)①已知直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45o至直线l2,如图2,求直线l2的函数表达式;
②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,-6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=-2x+6上的动点且在第四象限.若APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A (﹣4,2),B (﹣2,6),C (0,4)是直角坐标系平面上三点.
(1)把△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1 , 画出平移后的图形;
(2)若△ABC内部有一点P (a,b),则平移后它的对应点Pl的坐标为
(3)以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2 , 请在所给的坐标系中作出所有满足条件的图形.

查看答案和解析>>

同步练习册答案