精英家教网 > 初中数学 > 题目详情

【题目】如图,直线相交于点的平分线,.

(1)图中∠BOE的补角是

(2)若∠COF2COE,求的度数;

(3) 试判断OF是否平分∠AOC,并说明理由;请说明理由.

【答案】1)∠AOE和∠DOE;230°;(3OF平分∠AOC,理由见解析.

【解析】

1)根据补角的定义可以得出结果,另外注意∠BOE=COE,不要漏解;

2)根据∠COE与∠COF互余,以及∠COF2COE,可以求出∠COE的度数,又OE为∠BOC的平分线可以得出结果;

3)根据邻补角的性质、角平分线的定义解答.

解:(1)∵OE平分∠BOC,∴∠BOE=COE

∵∠COE+DOE=180°,

∴∠BOE+DOE=180°.

又∵∠AOE+BOE=180°,

所以∠BOE的补角为∠AOE和∠DOE;

2)∵

∴∠COE+COF=90°,

又∠COF2COE

∴∠COE=30°.

∴∠BOE=COE=30°;

3)∵OEOF
∴∠EOF=90°,
∴∠COF=90°-COE
又∵∠AOF=180°-EOF-BOE=90°-BOE

又∠BOE=COE
∴∠COF=AOF
OF平分∠AOC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】综合与实践

问题情境:在数学活动课上,我们给出如下定义:顺次连按任意一个四边形各边中点所得的四边形叫中点四边形.如图(1),在四边形ABCD中,点EFGH分别为边ABBCCDDA的中点.试说明中点四边形EFGH是平行四边形.

探究展示:勤奋小组的解题思路:

反思交流:

1上述解题思路中的依据1”依据2”分别是什么?

依据1   ;依据2   

连接AC,若ACBD时,则中点四边形EFGH的形状为   

创新小组受到勤奋小组的启发,继续探究:

2)如图(2),点P是四边形ABCD内一点,且满足PAPBPCPDAPBCPD,点EFGH分别为边ABBCCDDA的中点,猜想中点四边形EFGH的形状,并说明理由;

3)若改变(2)中的条件,使APBCPD90°,其它条件不变,则中点四边形EFGH的形状为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知:Rt△ABC中,∠ACB=90°.作∠BAC的平分线AM交BC于点D,在所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.

(1)试判断四边形AEDF的形状,并证明;

(2)若AB=10,BC=8,在折痕EF上有一动点P,求PC+PD的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点AB在数轴上对应的数分别为ab,则AB两点间的距离表示为AB|ab|.根据以上知识解题:

1)点A在数轴上表示3,点B在数轴上表示2,那么AB_______

2)在数轴上表示数a的点与﹣2的距离是3,那么a______

3)如果数轴上表示数a的点位于﹣42之间,那么|a+4|+|a2|______

4)对于任何有理数x|x3|+|x6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c经过原点O及点A(﹣4,0)和点C(2,3).

(1)求抛物线的解析式及顶点坐标;

(2)如图1,设抛物线的对称轴与x轴交于点E,将直线y=2x沿y轴向下平移n个单位后得到直线l,若直线l经过C点,与y轴交于点D,且与抛物线的对称轴交于点F.若P是抛物线上一点,且PC=PF,求点P的坐标;

(3)如图2,将(1)中所求抛物线向上平移4个单位得到新抛物线,求新抛物线上到直线CD距离最短的点的坐标.(直接写出结果,不要解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各数分别填入相应的大括号里(将各数用逗号分开):

-80.2750,-1.04--3),-|2|.

1)正数集合:{ …}

2)分数集合:{ …}

3)负整数集合:{ …}

4)非负数集合:{ …}.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是正方形的边上的动点,是边延长线上的一点,且,设.

1)当是等边三角形时,求的长;

2)求的函数解析式,并写出它的定义域;

3)把沿着直线翻折,点落在点处,试探索:能否为等腰三角形?如果能,请求出的长;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案