精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.

(1)求证:AD=AF;

(2)求证:BD=EF;

(3)试判断四边形ABNE的形状,并说明理由.

【答案】(1)证明见解析;(2)证明见解析;(3)四边形ABNE是正方形.

【解析】

试题分析:(1)由等腰直角三角形的性质得出∠ABC=∠ACB=45°,求出∠ABF=135°,∠ABF=∠ACD,证出BF=CD,由SAS证明△ABF≌△ACD,即可得出AD=AF;

(2)由(1)知AF=AD,△ABF≌△ACD,得出∠FAB=∠DAC,证出∠EAF=∠BAD,由SAS证明△AEF≌△ABD,得出对应边相等即可;

(3)由全等三角形的性质得出得出∠AEF=∠ABD=90°,证出四边形ABNE是矩形,由AE=AB,即可得出四边形ABNE是正方形.

试题解析:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°,∵∠BCD=90°,∴∠ABF=∠ACD,∵CB=CD,CB=BF,∴BF=CD,在△ABF和△ACD中,AB=AC,ABF=ACD,BF=CD,∴△ABF≌△ACD(SAS),∴AD=AF;

(2)由(1)知,AF=AD,△ABF≌△ACD,∴∠FAB=∠DAC,∵∠BAC=90°,∴∠EAB=∠BAC=90°,∴∠EAF=∠BAD,在△AEF和△ABD中,AE=AB,EAF=BAD,AF=AD,∴△AEF≌△ABD(SAS),∴BD=EF;

(3)四边形ABNE是正方形;理由如下:

∵CD=CB,∠BCD=90°,∴∠CBD=45°,由(2)知,∠EAB=90°,△AEF≌△ABD,∴∠AEF=∠ABD=90°,∴四边形ABNE是矩形,又∵AE=AB,∴四边形ABNE是正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2﹣2x+k=0有实数根,则k的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.

(1)求证:BD=CE;

(2)求证:∠M=∠N.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】湖北省201812月初出现了全省范围内的强降温,如果气温上升5℃记为+5℃,则-8℃表示( )

A. 下降3 B. 上升3 C. 下降8 D. 上升8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数,其中

(1)求该二次函数的对称轴方程;

(2)过动点C(0, )作直线y轴.

① 当直线与抛物线只有一个公共点时, 求的函数关系;

② 若抛物线与x轴有两个交点,将抛物线在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象. 当=7时,直线与新的图象恰好有三个公共点,求此时的值;

(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.
(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.
(2)如果△ABC的面积为5cm2 , 求四边形ABDE的面积.
(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.

(1)求证:△BCF≌△BA1D

(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】作图题:如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△AOB的三个顶点A,O,B都在格点上.

(1)画出△AOB关于点O成中心对称的三角形;
(2)画出△AOB绕点O逆时针旋转90后得到的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)7(3﹣x)﹣5(x﹣3)=8
(2)

查看答案和解析>>

同步练习册答案