精英家教网 > 初中数学 > 题目详情

【题目】已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.

(1)求证:BD=CE;

(2)求证:∠M=∠N.

【答案】(1)答案见解析;(2)答案见解析

【解析】

试题分析:(1)由SAS证明△ABD≌△ACE,得出对应边相等即可

(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.

试题解析:(1)在△ABD和△ACE中,AB=AC,1=2,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE;

(2)∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,∵∠C=BA,AC=AB,CAM=CAN,∴△ACM≌△ABN(ASA),∴∠M=∠N.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R .对于一个点与等边三角形,给出如下定义:满足rdR的点叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣,﹣1),C(,﹣1).

(1)已知点D(2,2),E,1),F,﹣1).在DEF中,是等边△ABC的中心关联点的是

(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.

①若线段AM上存在等边△ABC的中心关联点Pmn),求m的取值范围;

②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b总存在等边△ABC的中心关联点;(直接写出答案,不需过程)

(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为.当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别延长ABCD的边CD,AB到E,F,使DE=BF,连接EF,分别交AD,BC于G,H,连结CG,AH.

求证:CG∥AH.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店需要购进甲、乙两种商品共180件,其进价和售价如表:(注:获利=售价﹣进价)

进价(元/件)

14

35

售价(元/件)

20

43


(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面内的三条直线有哪几种位置关系?请画图说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明. 已知:如图,BE∥CD,∠A=∠1,

求证:∠C=∠E.
证明:∵BE∥CD (已知 )
∴∠2=∠C (
又∵∠A=∠1 (已知 )
∴AC∥DE (
∴∠2=∠E (
∴∠C=∠E (等量代换 )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是( )

A.3
B.6
C.7
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.

(1)求证:AD=AF;

(2)求证:BD=EF;

(3)试判断四边形ABNE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若点Pab)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个派生函数.例如:点(2 )在函数y=的图象上,则函数y=2x2+ 称为函数y=的一个派生函数.现给出以下两个命题:

1)存在函数y=的一个派生函数,其图象的对称轴在y轴的右侧

2)函数y=的所有派生函数的图象都经过同一点,下列判断正确的是(  )

A. 命题(1)与命题(2)都是真命题

B. 命题(1)与命题(2)都是假命题

C. 命题(1)是假命题,命题(2)是真命题

D. 命题(1)是真命题,命题(2)是假命题

查看答案和解析>>

同步练习册答案