分析 (1)根据等边三角形的性质得△CAE≌△ABD,从而得证;
(2)由(1)中全等得到结果;
(3)过点E作EF平行于BC交AC于点F,易证△AEF为等边三角形,由此得到△CFE≌△EBD,从而得证.
解答 (1)证明:∵△ABC为等边三角形,
∴∠CAE=∠ABD=60°,
在△CAE和△ABD中,
$\left\{\begin{array}{l}{AC=AB}\\{∠CAE=∠ABD}\\{AE=BD}\end{array}\right.$,
∴△CAE≌△ABD,
∴CE=AD;
(2)解:∠CMD的大小不变,
∵△CAE≌△ABD,
∴∠ACE=∠BAD,
∵∠CAD+∠BAD=∠BAC=60°,
∴∠CMD=∠CAD+∠ACE=∠CAD+∠BAD=60°;
(3)证明:如图,![]()
过点E作EF∥BC交AC于点F,
则∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,△AEF为等边三角形,
在△CFE和△EBD中,
$\left\{\begin{array}{l}{EF=AE=BD}\\{∠EFC=∠DBE=120°}\\{CF=EB}\end{array}\right.$,
∴△CFE≌△EBD,
∴CE=DE.
点评 此题考查三角形全等的判定与性质,等边三角形的性质,掌握三角形全等的判定方法是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com