精英家教网 > 初中数学 > 题目详情

【题目】在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EFMN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度.(结果保留根号)

【答案】30+10)米

【解析】

如图作BHEFCKMN,垂足分别为HK,则四边形BHCK是矩形,设CK=HB=x,根据tan30°=列出方程即可解决问题.

解:如图作BHEFCKMN,垂足分别为HK,则四边形BHCK是矩形,

CK=HB=x
∵∠CKA=90°,∠CAK=45°
∴∠CAK=ACK=45°
AK=CK=xBK=HC=AK-AB=x-30
HD=x-30+10=x-20
RtBHD中,∵∠BHD=90°,∠HBD=30°
tan30°=

解得x=30+10
∴河的宽度为(30+10)米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DFMN分别是DCDF的中点,连接MN.AB=7BE=5,则MN=_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角形纸片ABC中,AB3AC4D为斜边BC的中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;设Pn1Dn2的中点为Dn1,第n次将纸片折叠,使点A与点Dn1重合,折痕与AD交于点Pnn2),则AP2019的长为(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.

1)如果随机抽取1名同学单独展示,那么女生展示的概率为

2)如果随机抽取2名同学共同展示,求同为男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于E,OF⊥AC于FBE=OF

1)求证:OF∥BC;

2)求证:△AFO≌△CEB;

3)若EB=5cmCD=cm,设OE=x,求x值及阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°∠ABC=30°AC=2△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是 (  )

A. B. 2 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴, 轴分别交于点A、B,抛物线经过点A和点B,与x轴的另一个交点为C,动点D从点A出发,以每秒1个单位长度的速度向O点运动,同时动点E从点B出发,以每秒2个单位长度的速度向A点运动,设运动的时间为t秒,0﹤t﹤5.

(1)求抛物线的解析式;

(2)当t为何值时,以A、D、E为顶点的三角形与△AOB相似;

(3)当△ADE为等腰三角形时,求t的值;

(4)抛物线上是否存在一点F,使得以A、B、D、F为顶点的四边形是平行四边形?若存在,直接写出F点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y-x-3x轴,y轴分别交于点AC,经过点AC的抛物线yax2+bx3x轴的另一个交点为点B(20),点D是抛物线上一点,过点DDEx轴于点E,连接ADDC.设点D的横坐标为m

(1)求抛物线的解析式;

(2)当点D在第三象限,设△DAC的面积为S,求Sm的函数关系式,并求出S的最大值及此时点D的坐标;

(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,PCD边上一点(DP<CP),APB=90°.将ADP沿AP翻折得到AD′P,PD′的延长线交边AB于点M,过点BBNMPDC于点N.

(1)求证:AD2=DPPC;

(2)请判断四边形PMBN的形状,并说明理由;

(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.

查看答案和解析>>

同步练习册答案