【题目】如图, 已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F. 试说明:(1)△ABP≌△AEQ;(2)EF=BF
【答案】2.
【解析】(1)根据等边三角形性质得出AB=AE,AP=AQ,∠ABE=∠BAE=∠PAQ=60°,求出∠BAP=∠EAQ,根据SAS证△BAP≌△EAQ,推出∠AEQ=∠ABC=90°;
(2)根据等边三角形性质求出∠ABE=∠AEB=60°,根据∠ABC=90°=∠AEQ求出∠BEF=∠EBF=30°,即可得出答案.
(1)解:△BEC是等腰三角形,
理由是:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEC=∠ECB,
∵CE平分∠DEB,
∴∠DEC=∠BEC,
∴∠BEC=∠ECB,
∴BE=BC,
∴△BEC是等腰三角形.
(2)解:∵四边形ABCD是矩形,
∴∠A=90°,
∵∠ABE=45°,
∴∠AEB=45°=∠ABE,
∴AE=AB=,
由勾股定理得:BE=,
即BC=BE=2.
“点睛”本题考查了等边三角形的性质,全等三角形的性质和判定,等腰三角形的性质和判定的应用.
科目:初中数学 来源: 题型:
【题目】对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )
A. c<﹣3B. c<﹣2C. c<D. c<1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△OAB与△OCD是以点0为位似中心的位似图形,相似比为1:2,∠OCD=90,CO=CD.若B(2,0),则点C的坐标为( )
A. (2,2) B. (1,2) C. (,2) D. (2,1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在函数y=(x>0)的图象上,过点A作x轴、y轴的垂线分别交函数y=(x>0,k>2)的图象于点B、C,过点C作x轴的垂线交y=(x>0)的图象于点D,连结BC、OC、OD.若点A、C的横坐标分别为1和2,则△ABC与△OCD的面积之和为( )
A.2B.3C.4D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AB=10,AC=6.动点P从点A出发,沿折线AC﹣CB运动,在边AC上以每秒3个单位长度的速度运动,在边BC上以每秒4个单位长度的速度运动,到点B停止,当点P不与△ABC的顶点重合时,过点P作其所在直角边的垂线交AB于点Q;以Q为直角顶点向PQ右侧作Rt△PQD,且QD=PQ.设△PQD与△ABC重叠部分图形的面积为S,点P运动的时间为t(s).
(1)当点P在边AC上时,求PQ的长(含t的代数式表示);
(2)点D落在边BC上时,求t的值;
(3)求S与t之间的函数关系式;
(4)设PD的中点为E,作直线CE.当直线CE将△PQD的面积分成1:5两部分时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校准备组织一次“研学之旅”活动,现用抽签的方式从以下四个地方:九峰公园、柑橘博览园、平田桐树坑、长潭水库(其中九峰公园、平田桐树坑是爱国主义教育基地)中确定两个作为活动地点.将四个地点分别写在4张完全相同的卡片上,背面朝上并洗匀,先从中随机抽取一张卡片,再从剩下的卡片中随机抽取一张.则“抽中的两个地方都是爱国主义教育基地”的概率为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为2的正方形中,动点,分别以相同的速度从,两点同时出发向和运动(任何一个点到达停止),在运动过程中,则线段的最小值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=3,AC=4,以AC为斜边向外作等腰直角△ACD.连接BD,将△DAB绕点D顺时针旋转90°,点B的对应点为E.
(1)画出旋转后的三角形;
(2)在(1)的情况下连接BE,若BC=5,求△BCE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AH⊥BC,点E是AH上一点,延长AH至点F,使FH=EH.
(1)求证:四边形EBFC是菱形;
(2)若∠BAC=∠ECF,求∠ACF的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com