如图:在?ABCD中,AC为其对角线,过点D作AC的平行线与BC的延长线交于E.
(1)求证:△ABC≌△DCE;
(2)若AC=BC,求证:四边形ACED为菱形.
![]()
(1)证明见解析
(2)证明见解析
【解析】
试题分析:(1)由AAS即可判定两三角形全等;
(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.
试题解析:(1)∵四边形ABCD为平行四边形,
∴AB
CD,∠B=∠ADC,
∴∠B=∠DCE,
又∵DE∥AC
∴∠ACB=∠E,
∴△ABC≌△DCE;
(2)∵四边形ABCD为平行四边形
∴AD∥BC,
即AD∥CE,
由DE∥AC,
∴四边形ACED为平行四边形,
∵AC=BC,
∴∠B=∠CAB,
∵AB∥CD,
∴∠CAB=∠ACD,
又∵∠B=∠ADC,
∴∠ADC=∠ACD,
∴AC=AD,
∴平行四边形ACED为菱形.
考点:1、全等三角形的判定与性质;2、平行四边形的性质;3、菱形的判定
科目:初中数学 来源:2014年初中毕业升学考试(山东滨州卷)数学(解析版) 题型:解答题
在一个口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.小明和小强采取了不同的摸取方法,分别是:
小明:随机抽取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号;
小强:随机摸取一个小球记下标号,不放回,再随机地抽取一个小球,记下标号.
(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;
(2)分别求出小明和小强两次摸球的标号之和等于5的概率.
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(山东济宁卷)数学(解析版) 题型:选择题
把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是( )
A.两点确定一条直线 B.垂线段最短
C.两点之间线段最短 D.三角形两边之和大于第三边
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(安徽卷)数学(解析版) 题型:选择题
如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )
![]()
![]()
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(四川雅安卷)数学(解析版) 题型:填空题
在平面直角坐标系中,O为坐标原点,则直线y=x+
与以O点为圆心,1为半径的圆的位置关系为 .
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(四川雅安卷)数学(解析版) 题型:选择题
a、b、c是△ABC的∠A、∠B、∠C的对边,且a:b:c=1:
:
,则cosB的值为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(四川眉山卷)数学(解析版) 题型:解答题
如图,已知直线
与x轴交于点A,与y轴交于点C,抛物线
经过点A和点C,对称轴为直线l:
,该抛物线与x轴的另一个交点为B.
(1)求此抛物线的解析式;
(2)点P在直线l上,求出使△PAC的周长最小的点P的坐标;
(3)点M在此抛物线上,点N在y轴上,以A、B、M、N为顶点的四边形能否为平行四边形?若能,直接写出所有满足要求的点M的坐标;若不能,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com