【题目】已知抛物线y=kx2+(k﹣2)x﹣2(其中k>0).
(1)求该抛物线与x轴的交点及顶点的坐标(可以用含k的代数式表示);
(2)若记该抛物线顶点的坐标为P(m,n),直接写出|n|的最小值;
(3)将该抛物线先向右平移个单位长度,再向上平移个单位长度,随着k的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).
【答案】(1)抛物线的顶点坐标是(,﹣);(2)当k=2时,|n|的最小值是2;(3)新函数的解析式为y=﹣﹣1.
【解析】试题分析:(1)令y=0,解方程kx2+(k﹣2)x﹣2=0即可得到抛物线与x轴的交点,根据抛物线的顶点坐标公式(﹣)代入进行计算即可求解;
(2)根据(1)的结果,然后利用绝对值的性质,再根据不等式的性质进行解答;
(3)根据左加右减,上加下减,写出平移后的抛物线顶点坐标,然后消掉字母k即可得解.
试题解析:解:(1)当y=0时,kx2+(k﹣2)x﹣2=0,即(kx﹣2)(x+1)=0,解得:x1=,x2=﹣1,∴抛物线与x轴的交点坐标是(,0)与(﹣1,0),﹣=﹣=﹣==﹣,∴抛物线的顶点坐标是(﹣,﹣);
(2)根据(1),|n|=|﹣|===++1≥2+1=1+1=2,当且仅当=,即k=2时取等号,∴当k=2时,|n|的最小值是2;
(3)﹣+=,﹣+===﹣k﹣1,设平移后的抛物线的顶点坐标为(x,y),则,消掉字母k得:y=﹣﹣1,∴新函数的解析式为y=﹣﹣1.
科目:初中数学 来源: 题型:
【题目】喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度 y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.
(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;
(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读题:课本上有这样一道例题:“解方程:
解:去分母得:
6(x+15)=15-10(x-7)①
6x+90=15-10x+70②
16x=-5③
x=- ④
请回答下列问题:
(1)得到①式的依据是________;
(2)得到②式的依据是________;
(3)得到③式的依据是________;
(4)得到④式的依据是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设=k,下列结论:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)当k=1时,△ABE∽△ADF,其中结论正确的是( )
A.(1)(2)(3) B.(1)(3) C.(1)(2) D.(2)(3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某医药研究所研制了一种抗生素新药,据临床观察:如果成人按规定的剂量注射这种抗生素,那么注射药液后每毫升血液中的含药量与时间之间的关系近似地满足如图所示的折线.
(1)写出注射药液后,每毫升血液中含药量与时间之间的函数解析式及自变量的取值范围;
(2)据临床观察:每毫升血液中含药量不少于时,对控制病情是有效的,如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?这个有效时间是多长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以直线上点为端点作射线,使,将直角的直角顶点放在点处.
(1)若直角的边在射线上(图①),求的度数;
(2)将直角绕点按逆时针方向转动,使得所在射线平分(图②),说明所在射线是的平分线;
(3)将直角绕点按逆时针方向转动到某个位置时,恰好使得(图③),求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】元旦期间,丹东新一百商城销售两种商品,种商品每件进价元,售价元;种商品每件售价元,利润率为.
(1)每件种商品利润率为 ,种商品每件进价为 元;
(2)由于热销,商城决定再购进上面的两种商品共件(每件商品的进价不变),采购部预算共支出元,财务部算了一下,说:“如果你用这些钱买两种商品,那么账肯定算错了!”请你用学过的方程知识解释财务部为什么会这样说?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,
(1)求k的值;
(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;
(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.
(1)求甲、乙两种型号设备的价格;
(2)该公司决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com