【题目】如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设=k,下列结论:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)当k=1时,△ABE∽△ADF,其中结论正确的是( )
A.(1)(2)(3) B.(1)(3) C.(1)(2) D.(2)(3)
【答案】C
【解析】
试题分析:(1)∵四边形ABCD是矩形,
∴∠B=∠C=90°,
∴∠BAE+∠AEB=90°,
∵EF⊥AE,
∴∠AEB+∠FEC=90°,
∴∠BAE=∠FEC,
∴△ABE∽△ECF;
故(1)正确;
(2)∵△ABE∽△ECF,
∴,
∵E是BC的中点,
即BE=EC,
∴,
在Rt△ABE中,tan∠BAE=,
在Rt△AEF中,tan∠EAF=,
∴tan∠BAE=tan∠EAF,
∴∠BAE=∠EAF,
∴AE平分∠BAF;
故(2)正确;
(3)∵当k=1时,即=1,
∴AB=AD,
∴四边形ABCD是正方形,
∴∠B=∠D=90°,AB=BC=CD=AD,
∵△ABE∽△ECF,
∴,
∴CF=CD,
∴DF=CD,
∴AB:AD=1,BE:DF=2:3,
∴△ABE与△ADF不相似;
故(3)错误.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形边长为1的网格中,点A,B,C均在格点上.
(Ⅰ)AC的长度等于_____;
(Ⅱ)在图中有一点P,若连接AP,PB,PC,满足AP平分∠A,且PC=PB,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知菱形的边长为,点在轴负半轴上,点在坐标原点,点的坐标为(,),抛物线顶点在边上,并经过边的中点.
(1)求这条抛物线的函数解析式;
(2)点关于直线的对称点是,求点到点的最短距离;
(3)如图(2)将菱形以每秒个单位长度的速度沿轴正方向匀速平移,过点作于点,交抛物线于点,连接、.设菱形平移的时间为秒(),问是否存在这样的,使与相似?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角板的两个锐角顶点重合,,,,分别是,的平分线.
(1)如图①所示,当与重合时,则的大小为______.
(2)当绕着点旋转至如图②所示,当,则的大小为多少?
(3)当绕着点旋转至如图③所示,当时,求的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点,,,,在同一条直线上,,为的中点,.
(1)图中共有直线______条,线段______条,射线______条;
(2)求线段的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某快递公司有甲、乙、丙三个机器人分配快件,甲单独完成需要x小时,乙单独完成需要y小时,丙单独完成需要z小时.
(1)求甲单独完成的时间是乙丙合作完成时间的几倍?
(2)若甲单独完成的时间是乙丙合作完成时间的a倍,乙单独完成的时间是甲丙合作完成时间的b倍,丙单独完成的时间是甲乙合作完成时间的c倍,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=kx2+(k﹣2)x﹣2(其中k>0).
(1)求该抛物线与x轴的交点及顶点的坐标(可以用含k的代数式表示);
(2)若记该抛物线顶点的坐标为P(m,n),直接写出|n|的最小值;
(3)将该抛物线先向右平移个单位长度,再向上平移个单位长度,随着k的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点在数轴上对应的数为,点对应的数为,且G为线段上一点,两点分别从点沿方向同时运动,设点的运动速度为点的运动速度为,运动时间为.
(1)点对应的数为 ,点对应的数为 ;
(2)若,试求为多少时,两点的距离为;
(3)若,点为数轴上任意一点,且,请直接写出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com