【题目】如图,在正方形 ABCD 中,E 为 BC 的中点,F 是 CD 上一点,且 CF CD ,
求证:(1)∠AEF=90°;
(2) ∠BAE=∠EAF.
【答案】(1)证明见详解 (2)证明见详解
【解析】
(1)设正方形的边长为4a,先依据勾股定理求得AE、AF、EF的长,然后依据勾股定理的逆定理可证明结论;
(2)过点E作EG⊥AF于G,求出EG的长,得出BE=EG,则结论得证.
解:(1)证明:设AB=4a,
∵E为AB的中点,
∴BE=CE=2a,
∵CF= CD,
∴CF=a,DF=3a,
∴AE=a,EF=a,AF==5a,
∵AE2+EF2=(2a)2+(a)2=25a2,AF2=25a2,
∴AE2+EF2=AF2
∴∠AEF=90°;
(2)过点E作EG⊥AF于G,
∵S△AEF=×2a×a=×5a×EG,
∴EG=2a,
∴BE=EG,
又∵∠B=∠AGE=90°,
∴∠BAE=∠EAF.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )
A.四边形AEDF是平行四边形
B.若∠BAC=90°,则四边形AEDF是矩形
C.若AD平分∠BAC,则四边形AEDF是矩形
D.若AD⊥BC且AB=AC,则四边形AEDF是菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+3的图形经过点A (1, m),与x轴、y轴分别相交于B、C两点,且∠ABO=45°,设点D的坐标为(3,0)
(1) 求m的值;
(2) 联结CD、AD,求△ACD的面积;
(3) 设点E为x轴上一动点,当∠ADC=∠ECD时,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知 OACB 的顶点 O、A、B 的坐标分别是(0,a)、(b,0),且a、b 满足 b .
(1)如图 1,a= ,b= ,点 C 的坐标 .
(2)如图 2,点 P 为边 OB 上一动点,将线段 AP 绕 P 点顺时针旋转 90°至 PD.当点 P 从O 运动到 B 的过程中,求点 D 运动路径的长度.
(3)如图 3,在(2)的条件下,作等腰 Rt△BED,且∠DBE=90°,再作等腰 Rt△ECF, 且∠ECF=90°,直线 FE 分别交 AC、OB 于点 M、N,求证:FM=EN.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.
(1)求证:BN=DM;
(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、BN于点D、C,DO平分∠ADC.
(1)求证:CD是⊙O的切线;
(2)设AD=4,AB=x (x > 0),BC=y (y > 0). 求y关于x的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:
将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是( )
A.1.4
B.1.1
C.0.8
D.0.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com