【题目】一名大学毕业生响应国家“自主创业”的号召,在成都市高新区租用了一个门店,聘请了两名员工,计划销售一种产品.已知该产品成本价是20元/件,其销售价不低于成本价,且不高于30元/件,员工每人每天的工资为200元.经过市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.
(1)求y与x之间的函数关系式;
(2)求每件产品销售价为多少元时,每天门店的纯利润最大?最大纯利润是多少?(纯利润=销售收入﹣产品成本﹣员工工资)
【答案】(1)y=﹣10x+500(20≤x≤30);(2)当x=30时,每天门店的纯利润W最大,最大为1600元.
【解析】
(1)利用待定系数法求出y与x之间的函数关系式;
(2)根据纯利润=销售收入﹣产品成本﹣员工工资列出二次函数解析式,根据二次函数的性质解答即可.
解:(1)设y与x之间的函数关系式为y=kx+b,
把(21,290)、(29,210)代入,
得,
解得,,
则y与x之间的函数关系式为y=﹣10x+500(20≤x≤30);
(2)每天门店的纯利润W=(﹣10x+500)(x﹣20)﹣400
=﹣10x2+700x﹣10400
=﹣10(x﹣35)2+1850,
∵20≤x≤30,
∴当x=30时,每天门店的纯利润W最大,最大为1600元.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,记函数的图象为,正方形的对称中心与原点重合,顶点的坐标为(2,2),点在第四象限.
(1)当=1时.
①求的最低点的纵坐标;
②求图象上所有到轴的距离为2的横坐标之和.
③若当≤≤时,-9≤≤2,则、的对应值为 .
(2)当图象与正方形的边恰好有两个公共点时,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图1,在中,对角线,,,如图2,点从点出发,沿方向匀速运动,速度为,过点作交于点;将沿对角线剪开,从图1的位置与点同时出发,沿射线方向匀速运动,速度为,当点停止运动时,也停止运动.设运动时间为,解答下列问题:
(1)当为何值时,点在线段的垂直平分线上?
(2)设四边形的面积为,试确定与的函数关系式;
(3)当为何值时,有最大值?
(4)连接,试求当平分时,四边形与四边形面积之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c的图象如图所示,下列说法正确的是( )
A.abc>0B.a﹣b+c=2
C.4ac﹣b2<0D.当x>﹣1时,y随x增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+b的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a)、B两点,与x轴交于点C(﹣4,0).
(1)求一次函数和反比例函数的表达式;
(2)若点D是第四象限内反比例函数图象上的点,且点D到直线AC的距离为5,求点D的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AC为弦,点D为中点,过点D作DE⊥直线AC,垂足为E,交AB的延长线于点F
(1)求证:EF是⊙O的切线;
(2)若EF=4,sin∠F=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC于点E.
(1)求证:ABCD是矩形;
(2)若AD=,cos∠ABE=,求AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com