精英家教网 > 初中数学 > 题目详情
10.某校八年级同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:

(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;
(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.
阅读后回答下列问题:
(1)方案(Ⅰ)是否可行?若可行,请证明;
(2)方案(Ⅱ)是否可行?若可行,请证明;
(3)方案(Ⅱ)中若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?否.(填是或否,不用证明)

分析 (1)由题意可证明△ACB≌△DCE,AB=DE,故方案(Ⅰ)可行;
(2)由题意可证明△ABC≌△EDC,AB=ED,故方案(Ⅱ)可行;
(3)若仅满足∠ABD=∠BDE≠90°,故此时方案(Ⅱ)不成立.

解答 解:(1)方案(Ⅰ)可行;理由如下:
∵DC=AC,EC=BC,
在△ACB和△DCE中,$\left\{\begin{array}{l}{AD=DC}\\{∠ACB=∠DCE}\\{BC=EC}\end{array}\right.$,
∴△ACB≌△DCE(SAS),
∴AB=DE,
∴测出DE的距离即为AB的长,
故方案(Ⅰ)可行.
(2)方案(Ⅱ)可行;理由如下:
∵AB⊥BC,DE⊥CD
∴∠ABC=∠EDC=90°,
在△ACB和△EDC中,$\left\{\begin{array}{l}{∠ABC=∠EDC=90°}\\{BC=DC}\\{∠ACB=∠ECD}\end{array}\right.$,
∴△ABC≌△EDC(ASA),
∴AB=ED,
∴测出DE的长即为AB的距离,
故方案(Ⅱ)可行.
(3)若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)不成立;
理由如下:若∠ABD=∠BDE≠90°,∠ACB=∠ECD,
∴△ABC∽△EDC,
∴$\frac{AB}{ED}=\frac{BC}{CD}$,
∴只要测出ED、BC、CD的长,即可求得AB的长.
但是此题没有其他条件,可能无法测出其他线段长度,
∴方案(Ⅱ)不成立;
故答案为:否.

点评 本题是三角形综合题,主要考查了全等三角形的判定与性质、相似三角形的判定和性质;本题综合性强,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.如图所示,∠A+∠B+∠C+∠D+∠E+∠F=360°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.(如图(1)、(2))
探究:设A、P两点间的距离为x.
(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论;
(2)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列变形正确的是(  )
A.4x-5=3x+2变形得 4x-3x=2-5B.$\frac{2}{3}x=\frac{3}{2}$变形得x=1
C.3(x-1)=2(x+3)变形得3x-1=2x+6D.$\frac{x-1}{2}-\frac{x}{5}=1$变形得3x=15

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.已知在Rt△ABC中,AD是斜边上的高,BC=3AC,那么△ABD的面积与△CBA的面积的比是(  )
A.1:3B.3:9C.8:1D.8:9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在直角坐标系中,点A,点B的坐标分别为(2,0),(0,2)
(1)求线段AB的长;
(2)若点E在AB上,OE⊥OF,且OE=OF,求AF+AE的值;
(3)在第2问的条件下过O作OM⊥EF交AB于M,试确定线段BE、EM、AM的数量关系?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算
(1)($\frac{7}{18}$-$\frac{5}{12}$)×36+95
(2)-32+8×(-2)2-(-4)÷(-1$\frac{1}{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,△ABC各顶点的坐标分别是A(-2,-4),B(0,-4),C(1,-1).
(1)在图中画出△ABC向左平移3个单位后的△A1B1C1
(2)在图中画出△ABC绕点C逆时针旋转90°后的△A2B2C;
(3)在图中画出△A1B1C1关于原点O中心对称的△A3B3C3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知:如图,A(-1,3),B(-2,0),C(2,2),求△ABC的面积.

查看答案和解析>>

同步练习册答案