精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x,y轴的交点分别为A,B,P是其对称轴x=1上的动点,根据图中提供的信息,给出以下结论:①2a+b=0,x=3ax2+bx+3=0的一个根,③△PAB周长的最小值是+3.其中正确的是(  )

A. ①②③ B. 仅有①② C. 仅有①③ D. 仅有②③

【答案】A

【解析】

①根据对称轴方程求得a、b的数量关系;

②根据抛物线的对称性知抛物线与x轴的另一个交点的横坐标是3;

③利用两点间直线最短来求PAB周长的最小值.

①根据图象知,对称轴是直线x=-=1,则b=-2a,即2a+b=0,故①正确;

②根据图象知,点A的坐标是(-1,0),对称轴是x=1,则根据抛物线关于对称轴对称的性质知,抛物线与x轴的另一个交点的坐标是(3,0),所以x=3ax2+bx+3=0的一个根,故②正确;

③如图所示,点A关于x=1对称的点是A′,即抛物线与x轴的另一个交点,

连接BA′与直线x=1的交点即为点P,则PAB周长的最小值是(BA′+AB)的长度,

B(0,3),A′(3,0),

BA′=3.即PAB周长的最小值是3+

故③正确.

综上所述,正确的结论是:①②③

故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:二次函数的图象如图所示,下列结论中:的实数);,其中正确的是( )

A. 2B. 3C. 4D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】非洲猪瘟疫情发生以来,猪肉市场供应阶段性偏紧和猪价大幅波动时有发生,为稳定生猪生产,促进转型升级,增强猪肉供应保障能力,国务院办公厅于20199月印发了《关于稳定生猪生产促进转型升级的意见》,某生猪饲养场积极响应国家号召,努力提高生产经营管理水平,稳步扩大养殖规模,增加猪肉供应量。该饲养场2019年每月生猪产量y(吨)与月份x,且x为整数)之间的函数关系如图所示.

1)请直接写出当x为整数)和x为整数)时,yx的函数关系式;

2)若该饲养场生猪利润P(万元/吨)与月份x,且x为整数)满足关系式:,请问:该饲养场哪个月的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程(m+1)x2﹣2x﹣1=0有两个不相等的实数根,

(1)求m的取值范围;

(2)若x=1是方程的一个根,求m的值和另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资. 已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为(元),年销售量为(万件),年获利为(万元)。(年获利=年销售额—生产成本—投资)

1)试写出之间的函数关系式;

2)请通过计算说明,到第一年年底,当取最大值时,销售单价定为多少?此时公司是盈利了还是亏损了?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.

(1)饲养场的长为多少米(用含a的代数式表示).

(2)若饲养场的面积为288m2,求a的值.

(3)当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形中,经顺时针旋转后与重合.

旋转中心是点________,旋转了________度;

如果,求:四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线的部分图象,其顶点坐标是,给出下列结论:①;②;③;④;⑤.其中正确结论的个数是(   )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCO的顶点BC在第二象限,点A(30),反比例函数y(k0)图象经过点CAB边的中点D,若∠Bα,则k的值为(  )

A. 4tanαB. 2sinαC. 4cosαD. 2tan

查看答案和解析>>

同步练习册答案