精英家教网 > 初中数学 > 题目详情

【题目】如图直线EF、CD相交于点O,OAOB,OC平分∠AOF.

(1)若∠AOE=40°,求∠BOD的度数

(2)若∠AOE=30°,请直接写出∠BOD的度数

(3)观察(1)(2)的结果猜想∠AOE和∠BOD的数量关系并说明理由.

【答案】(1)20°(2)15°(3)∠BOD=∠AOE,理由见解析。

【解析】

(1)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案;
(2)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案;

(3)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案.

解:(1)∵∠AOE+∠AOF=180°,∠AOE=40°,
∴∠AOF=140°;
又∵OC平分∠AOF,
∴∠FOC=∠AOF=70°,
∴∠EOD=∠FOC=70°;
∵OAOB, ∴∠AOB=90°

∵∠BOE=∠AOB-∠AOE=50°,
∴∠BOD=∠EOD-∠BOE=20°;

(2)∵∠AOE+∠AOF=180°,∠AOE=30°,
∴∠AOF=150°;
又∵OC平分∠AOF,
∴∠FOC=∠AOF=75°,
∴∠EOD=∠FOC=75°;
∵∠BOE=∠AOB-∠AOE=60°,
∴∠BOD=∠EOD-∠BOE=15°;

(3)从(1)(2)的结果中能看出∠BOD=∠AOE,理由如下:

∵∠AOE+∠AOF=180°,
∴∠AOF=180°-∠AOE;
又∵OC平分∠AOF,
∴∠FOC=∠AOF=90°-∠AOE,
∴∠EOD=∠FOC=90°-∠AOE;
∵OAOB, ∴∠AOB=90°

∵∠BOE=∠AOB-∠AOE=90°-∠AOE,
∴∠BOD=∠EOD-∠BOE=(90°-∠AOE)-(90°-∠AOE)=∠AOE;

∴∠BOD=∠AOE;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,某数学活动小组要测量山坡上的电线杆PQ的高度,他们在A处测得信号塔顶端P的仰角是45°,信号塔底端点Q的仰角为31°,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是68°,求信号塔PQ的高度.(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48,tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠A=90°,BC= .以BC的中点O为圆心的圆分别与AB、AC相切于D、E两点,则 的长为 ( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水是人类的生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)

(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?

(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

(1)2

(2)=﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 x轴的负半轴交于点A,与y轴交于点B,连结AB.点C 在抛物线上,直线AC与y轴交于点D.

(1)求c的值及直线AC的函数表达式;
(2)点P在x轴的正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.
①求证:△APM∽△AON;
②设点M的横坐标为m , 求AN的长(用含m的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一笔直的沿湖道路 上有 两个游船码头,观光岛屿 在码头 北偏东 的方向,在码头 北偏西 的方向, .游客小张准备从观光岛屿 乘船沿 回到码头 或沿 回到码头 ,设开往码头 的游船速度分别为 ,若回到 所用时间相等,则 (结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,(1)AOC是哪两个角的和;(2)AOB是哪两个角的差;

(3)如果AOBCOD,那么AOCDOB相等吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图两直线ABCD相交于点OOE平分BOD,∠AOC∶∠AOD=7∶11.

(1)COE的度数

(2)OFOECOF的度数

查看答案和解析>>

同步练习册答案