【题目】
填空:
如图,已知∠1+∠2=180°,∠3=∠B,求证:∠AED=∠ACB.
证明:∵∠1+∠2=180°(已知)
∠1+________=180°(邻补角的定义)
∴∠2=________(同角的补角定义)
∴AB∥EF(___________________)
∴∠3=________(_____________________)
又∵∠3=∠B(已知)
∴∠B=________(等量代换)
∴DE∥BC(_________________)
∴∠AED=∠ACB(__________________)
【答案】 ∠4 ∠4 内错角相等,两直线平行 ∠ADE 两直线平行,内错角相等 ∠ADE 同位角相等,两直线平行 两直线平行,同位角相等
【解析】试题分析:求出∠2=∠4,根据平行线的判定得出 ∥ ,根据平行线的性质得出∠3= ,求出,根据平行线的判定得出 ∥ ,根据平行线的性质得出即可.
本题解析:证明:∵∠1+∠2=180(已知),∠1+∠4=180(邻补角定义),∴∠2=∠4(同角的补角相等),∴ ∥ (内错角相等,两直线平行),∴∠3= (两直线平行,内错角相等),
∴ (等量代换),∴ ∥ (同位角相等,两直线平行),
∴= (两直线平行,同位角相等),
故答案为:∠4,∠4,内错角相等,两直线平行, , ,同位角相等,两直线平行,两直线平行,同位角相等。
科目:初中数学 来源: 题型:
【题目】如图,北部湾海面上,一艘解放军军舰在基地A的正东方向且距A地60海里的B处训练,突然接到基地命令,要该舰前往C岛,接送一名病危的渔民到基地医院救治.已知C岛在A的北偏东30°方向,且在B的北偏西60°方向,军舰从B处出发,平均每小时行驶30海里,需要多少时间才能把患病渔民送到基地医院.(精确到0.1小时,≈1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.
(1)求AD的长;
(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题正确的是( )
A.一组对边相等,另一组对边平行的四边形一定是平行四边形
B.对角线相等的四边形一定是矩形
C.两条对角线互相垂直的四边形一定是菱形
D.两条对角线相等且互相垂直平分的四边形一定是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),E是直线AB、CD内部一点,AB∥CD,连接EA、ED.
(1)探究:
①若∠A=30°,∠D=40°,则∠AED等于多少度?
②若∠A=20°,∠D=60°,则∠AED等于多少度?
③在图(1)中∠AED、∠EAB、∠EDC有什么数量关系,并证明你的结论.
(2)拓展:如图(2),射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的四个区域(不含边界,其中③④位于直线AB的上方),P是位于以上四个区域上点,猜想:∠PEB、∠PFC、∠EPF之间的关系.(不要求证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列是某同学在一次作业中的计算摘录:①4x3-(-2x2)=-6x5;②4a3b÷(-2a2b)=-2a;③(a3)2=a5;④(-a)3÷(-a)=-a2.其中正确的个数有( )
A. 1个 B. 2个
C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OABC的顶点A的坐标为(3,0),∠COA=60°,D为边AB的中点,反比例函数y=(k>0)的图象经过C、D两点,直线CD交y轴于点E,则OE的长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com