精英家教网 > 初中数学 > 题目详情

【题目】随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在20—40万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:

1)调查样本人数为__________,样本中B类人数百分比是_______,其所在扇形统计图中的圆心角度数是________

2)把条形统计图补充完整;

3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.

【答案】15020%72°

2)图形见解析;

3)选出的2人来自不同科室的概率=

【解析】

试题(1)根据调查样本人数=A类的人数除以对应的百分比.样本中B类人数百分比=B类人数除以总人数,B类人数所在扇形统计图中的圆心角度数=B类人数的百分比×360°

2)先求出样本中B类人数,再画图.

3)画树状图并求出选出的2人来自不同科室的概率.

试题解析:(1)调查样本人数为4÷8%=50(人),

样本中B类人数百分比(50﹣4﹣28﹣8÷50=20%

B类人数所在扇形统计图中的圆心角度数是20%×360°=72°

2)如图,样本中B类人数=50﹣4﹣28﹣8=10(人)

3)画树状图为:

共有20种可能的结果数,其中选出选出的2人来自不同科室占12种,

所以选出的2人来自不同科室的概率=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A(30),B(0-1),连接AB,B点作AB的垂线段,使BA=BC,连接AC.

(1)如图1,求C点坐标;

(2)如图2,P点从A点出发,沿x轴向左平移,连接BP,作等腰直角三角形BPQ,连接CQ.求证:PA=CQ.

(3)(2)的条件下,CPQ三点共线,求此时P点坐标及∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在ABCD中,延长DA到点E,延长BC到点F,使得AECF,连接EF,分别交ABCD于点MN,连接DMBN.

1)求证:△AEM≌△CFN

2)求证:四边形BMDN是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.

(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2

(2)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ中PQ的长度等于5cm?

(3)在(1)中,当P,Q出发几秒时,△PBQ有最大面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC∠BAC=54°∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EFEBC上,FAC上)折叠,点C与点O恰好重合,则∠OEC   度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读理解)

截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.

1)如图1ABC是等边三角形,点D是边BC下方一点,∠BDC120°,探索线段DADBDC之间的数量关系.

解题思路:延长DC到点E,使CEBD.连接AE,根据∠BAC+∠BDC180°,可证∠ABD=∠ACE,易证得ABDACE,得出ADE是等边三角形,所以ADDE,从而探寻线段DADBDC之间的数量关系.

根据上述解题思路,请直接写出DADBDC之间的数量关系是___________

(拓展延伸)

2)如图2,在RtABC中,∠BAC90°ABAC.若点D是边BC下方一点,∠BDC90°,探索线段DADBDC之间的数量关系,并说明理由;

(知识应用)

3)如图3,一副三角尺斜边长都为14cm,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ的长为________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进一种单价为元的篮球,如果以单价元出售,那么每月可售出个,根据销售经验,售价每提高元,销售量相应减少

某商场购进一种单价为元的篮球,如果以单价元出售,那么每月可售出个,根据销售经验,售价每提高元,销售量相应减少

假设销售单价提高元,那么销售每个篮球所获得的利润是________元;这种篮球每月的销售量是________个;(用含的代数式表示)

若商店准备获利元,则销售定价为多少元?商店应进货多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】建立一次函数关系解决问题:甲、乙两校为了绿化校园,甲校计划购买A种树苗,A种树苗每棵24元;乙校计划购买B种树苗,B种树苗每棵18元.两校共购买了35棵树苗.若购进B种树苗的数量少于A种树苗的数量,请给出一种两校总费用最少的方案,并求出该方案所需的总费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,ABC=30°,CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;

(2)如图2,当点E在△ABC内部时,猜想EDEB数量关系,并加以证明;

(3)如图3,当点E在△ABC外部时,EHAB于点H,过点EGEAB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.

查看答案和解析>>

同步练习册答案