精英家教网 > 初中数学 > 题目详情

【题目】已知,如图1,抛物线轴交于点,与轴交于点,且

1)求抛物线解析式;

2)如图2,点是抛物线第一象限上一点,连接轴于点,设点的横坐标为,线段长为,求之间的函数关系式;

3)在(2)的条件下,过点作直线轴,在上取一点(点在第二象限),连接,使,连接并延长轴于点,过点于点,连接.若时,求值.

【答案】1;(2;(3

【解析】

1)先令代入抛物线的解析式中求得与轴交点的坐标,根据可得的坐标,从而得的坐标,利用待定系数法求抛物线解析式;

2)如图2,设,证明,列比例式可得结论;

3)如图3,作辅助线,构建全等三角形和等腰直角三角形,先得,则是等腰直角三角形,得,由,得,求得,证明是等腰直角三角形,及,则,代入可得的值,并根据(2)中的点只在第一象限进行取舍.

1)如图1,当时,

代入抛物线中得:

解得:

∴抛物线的解析式为

2)如图2,设

轴于

3)如图3,连接,延长轴于

由(2)知:

是等腰直角三角形

是等腰直角三角形

,不符合题意,舍去

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,为河对岸的两幢建筑物,某学习小组为了测出河宽(沿岸是平行的),先在岸边的点处测得,再沿着河岸前进10米后到达点,在点处测得

1)求河宽;

2)该小组发现此时还可求得之间的距离,请求出的长.(精确到0.1米)(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散布;E:不运动.

以下是根据调查结果绘制的统计图表的一部分.

运动形式

A

B

C

D

E

人数

12

30

m

54

9

请你根据以上信息,回答下列问题:

1)接受问卷调查的共有   人,图表中的m=   n=   

2)统计图中,A类所对应的扇形圆心角的度数为   

3)根据调查结果,我市市民最喜爱的运动方式是   ,不运动的市民所占的百分比是   

4)郑州市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有暴走团活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗暴走团的大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点EBC边上的一点,且AEBD,垂足为点F,∠DAE2BAE

1)求证:BFDF13

2)若四边形EFDC的面积为11,求CEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是(

A. 甲乙两地相距1200千米

B. 快车的速度是80千米小时

C. 慢车的速度是60千米小时

D. 快车到达甲地时,慢车距离乙地100千米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年5月,某大型商业集团随机抽取所属的部分商业连锁店进行评估,将抽取的各商业连锁店按照评估成绩分成了四个等级,并绘制了如下不完整的扇形统计图和条形统计图.

根据以上信息,解答下列问题:

(1)本次评估随机抽取了多少家商业连锁店?

(2)请补充完整扇形统计图和条形统计图,并在图中标注相应数据;

(3)从两个等级的商业连锁店中任选2家介绍营销经验,求其中至少有一家是等级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】十八大以来,某校已举办五届校园艺术节.为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演经典诵读民乐演奏歌曲联唱民族舞蹈等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.

(1)五届艺术节共有________个班级表演这些节日,班数的中位数为________,在扇形统计图中,第四届班级数的扇形圆心角的度数为________

(2)补全折线统计图;

(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读民乐演奏歌曲联唱民族舞蹈分别用表示).利用树状图或表格求出该班选择两项的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,∠A=30°BDABC的角平分线,若AC= 12 ,则在ABDAB边上的高为(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在平面直角坐标系中,二次函数yx2+bx+c的图象与坐标轴交于ABC三点,其中点A的坐标为(﹣30),点B的坐标为(40),连接ACBC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ

1)填空:b c

2)在点PQ运动过程中,△APQ可能是直角三角形吗?请说明理由;

3)点M在抛物线上,且△AOM的面积与△AOC的面积相等,求出点M的坐标。

查看答案和解析>>

同步练习册答案