精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系中,轴正半轴上一点,连接,在第一象限作 ,过点作直线轴于,直线与直线交于点,且,则直线解析式为____________

【答案】

【解析】

A作AM⊥y轴,交y轴于M,交CDN,根据∠BMA=ANC=90°,∠BAC=90°可以得到∠ABM=∠CAN,再根据A点坐标可以得出OM=DN=AM=4,求出△ABM≌△CAN,根据全等的性质求出AN=BM,CN=4,再根据ED=5ECE在直线y=x上求出E的坐标,即可求出MN=10,CD=8,AN=BM=MN-AM=6的值,得出C10,8),B0,10)代入y=kx+b中,即可求出.

解:过轴,交轴于,交,则

中,

在直线上,

,即

在直线上,

设直线的解析式是

代入得:

即直线的解析式是

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在等腰△ABC中,ADBC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标中,点O是坐标原点,一次函数y1=﹣x+4与反比例函数y2(x0)的图象交于A(1m)B(n1)两点.

(1)kmn的值.

(2)根据图象写出当y1y2时,x的取值范围.

(3)若一次函数图象与x轴、y轴分别交于点NM,则求出△AON的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠B90°AC60cm,∠A60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点DE运动的时间是ts.过点DDFBC于点F,连接DEEF

1)求证:AEDF

2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;

3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,其中点B的坐标为(2,0),点C的坐标为(0,8),且抛物线的对称轴是直线x=﹣2.

(1)求此抛物线的表达式;

(2)连接AC,BC,若点E是线段AB上的一个动点(与点A,B不重合),过点E作EFAC交BC于点F,连接CE,设AE的长为m,CEF的面积为S,求S与m之间的函数关系式;

(3)在(2)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并判断S取得最大值时BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线y=﹣x2+bx+c交x轴于点A(﹣1,0)和点B,交y轴于点C(0,2)

(1)求抛物线的表达式;

(2)点P为第一象限抛物线上一点,是否存在使PBC面积最大的点P?若不存在,请说明理由;若存在,求出点P的坐标;

(3)点D坐标为(1,﹣1),连接AD,将线段AD绕平面内某一点旋转180度得线段MN(点M、N分别与点A、D对应),使点M、N都在抛物线上,求点M、N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠CAB=DAB下列条件中不能使△ABC≌△ABD的是( )

A. C=D B. ABC=ABD C. AC=AD D. BC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象分别交于C、D两点,点D(2,﹣3),点A(-2,0).

(1)求一次函数与反比例函数的解析式;

(2)求COD的面积;

(3)直接写出y1>y2时自变量x的取值范围.

查看答案和解析>>

同步练习册答案