【题目】探究:如图1,直线、、两两相交,交点分别为点A、B、C,点D在线段上,过点D作交于点E,过点E作交于点F.若,求的度数.请将下面的解答过程补充完整,并填空
解:∵,∴________.( )
∵,∴________( )
∴.(等量代换)
∵,∴________°.
应用:如图2,直线、、两两相交,交点分别为点A、B、C,点D在线段的延长线上,过点D作交于点E,过点E作交于点F.若,求的度数,并仿照(1)进行说明.
【答案】∠EFC;两直线平行,内错角相等;∠EFC;两直线平行,同位角相等;60;120.
【解析】
探究:依据两直线平行,内错角相等;两直线平行,同位角相等,即可得到∠DEF=60°.
应用:依据两直线平行,同位角相等;两直线平行,同旁内角互补,即可得到∠DEF=180°60°=120°.
探究:∵DE∥BC,
∴∠DEF=∠EFC.(两直线平行,内错角相等)
∵EF∥AB,
∴∠EFC=∠ABC.(两直线平行,同位角相等)
∴∠DEF=∠ABC.(等量代换)
∵∠ABC=60°,
∴∠DEF=60°.
故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,60;
应用:∵DE∥BC,
∴∠ABC=∠ADE=60°.(两直线平行,同位角相等)
∵EF∥AB,
∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)
∴∠DEF=180°60°=120°.
故答案为:120.
科目:初中数学 来源: 题型:
【题目】某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.
(1)篮球和足球的单价各是多少元?
(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(,0),(3,0).现将线段AB向上平移2个单位,再向右平移1个单位,得到线段AB的对应线段CD,连接AC,BD.
(1)点C,D的坐标分别为_______, ________,并求出四边形ABDC的面积S四边形ABDC;
(2)在y轴上存在一点P,连接PA,PB,且S△PAB =S四边形ABDC,求出满足条件的所有点P的坐标.
(3)若点Q为线段BD上一点(不与B,D两点重合),则的值______(填“变”或“不变”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):
(1)求出线段AB,曲线CD的解析式,并写出自变量的取值范围;
(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?
(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,.点是射线上一动点(与点不重合),、分别平分和、分别交射线于点,.
(1)①的度数是________;
②,________;
(2)求的度数;
(3)当点运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?
(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com