【题目】如图,四边形ABCD是正方形,点E,F分别在BC,AB上,点M在BA的延长线上,且CE=BF=AM,过点M,E分别作NM⊥DM,NE⊥DE交于N,连接NF.
(1)求证:DE⊥DM;
(2)猜想并写出四边形CENF是怎样的特殊四边形,并证明你的猜想.
【答案】(1)证明见解析;
(2)四边形CENF是平行四边形,理由见解析.
【解析】(1)证明:∵四边形ABCD是正方形,
∴DC=DA,∠DCE=∠DAM=90°,
在△DCE和△MDA中,,
∴△DCE≌△MDA(SAS),
∴DE=DM,∠EDC=∠MDA.
又∵∠ADE+∠EDC=∠ADC=90°,
∴∠ADE+∠MDA=90°,
∴DE⊥DM;
(2)解:四边形CENF是平行四边形,理由如下:
∵四边形ABCD是正方形,
∴AB∥CD,AB=CD.
∵BF=AM,
∴MF=AF+AM=AF+BF=AB,
即MF=CD,
又∵F在AB上,点M在BA的延长线上,
∴MF∥CD,
∴四边形CFMD是平行四边形,
∴DM=CF,DM∥CF,
∵NM⊥DM,NE⊥DE,DE⊥DM,
∴四边形DENM都是矩形,
∴EN=DM,EN∥DM,
∴CF=EN,CF∥EN,
∴四边形CENF为平行四边形.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.
(1)已知点A的坐标为(,1),
①在点R(0,4),S(2,2),T(2, )中,为点A的同族点的是 ;
②若点B在x轴上,且A,B两点为同族点,则点B的坐标为 ;
(2)直线l: ,与x轴交于点C,与y轴交于点D,
①M为线段CD上一点,若在直线上存在点N,使得M,N两点为同族点,求n的取值范围;
②M为直线l上的一个动点,若以(m,0)为圆心, 为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年春运,长春机场春运前十天客流量持续攀升,共计保障航班起降2727架次,运送旅客大约364000人次,数据364000科学记数法表示为_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个小立方体的六个面分别标有字母A,B,C,D,E,F从三个不同方向看到的情形如图所示.
(1) A对面的字母是 ,B对面的字母是 ,E对面的字母是 .(请直接填写答案)
(2) 若A=2x-1,B=-3x+9.C=-7.D=1,E=4x+5,F=9,且字母A与它对面的字母表示的数互为相反数,求B,E的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边)
(1)求抛物线的解析式及A,B两点的坐标;
(2)若(1)中抛物线的对称轴上有点P,使△ABP的面积等于△ABC的面积的2倍,求出点P的坐标;
(3)在(1)中抛物线的对称轴l上是否存在一点Q,使AQ+CQ的值最小?若存在,求AQ+CQ的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:
①抛物线y=ax2(a≠0)的图象的顶点一定是原点;
②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;
③AB的长度可以等于5;
④△OAB有可能成为等边三角形;
⑤当-3<x<2时,ax2+kx<b,
其中正确的结论是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,已知AD∥BC,AB⊥BC,点E,F在边AB上,且∠AED=45°,∠BFC=60°,AE=2,EF=2﹣ ,FC=2 .
(1)BC= .
(2)求点D到BC的距离.
(3)求DC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com