精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB1,对角线ACBD相交于点O,过点OEFAC分别交射线AD与射线CB于点E和点F,联结CEAF

1)求证:四边形AFCE是菱形;

2)当点EF分别在边ADBC上时,如果设ADx,菱形AFCE的面积是y,求y关于x的函数关系式,并写出x的取值范围;

3)如果ODE是等腰三角形,求AD的长度.

【答案】1)见解析;(2;(3AD的值为.

【解析】

1)由DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.

2)由cosDAC=,求出AE即可解决问题;

3)分两种情形分别讨论求解即可.

1)①证明:如图1中,

∵四边形ABCD是矩形,

ADBCOBOD

∴∠EDO=∠FBO

DOEBOF中,

DOE≌△BOF

EOOF,∵OBOD

∴四边形EBFD是平行四边形,

EFBDOBOD

EBED

∴四边形EBFD是菱形.

2)由题意可知:

AE≤AD

x2≥1

x0

x≥1

x≥1).

3)①如图2中,当点E在线段AD上时,EDEO,则RtCEDRtCEO

CDCOAO1

RtADC中,AD

如图3中,当的E在线段AD的延长线上时,DEDO

DEDOOCECCE

RtECDRtCEO

CDEO

∵∠DAC=∠EAO,∠ADC=∠AOE90°

∴△ADC≌△AOE

AEAC

EO垂直平分线段AC

EAEC

EAECAC

∴△ACE是等边三角形,

ADCDtan30°

综上所述,满足条件的AD的值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明和小华先后从甲地出发到乙地,小明先乘坐客车出发1小时,小华才开车前住乙地,小华到达乙地后立即按原速从乙地返回甲地。已知小明、小华离甲地距离y(千米)与小明出发时间x(小时)之间的函数关系如图所示,请根据图象解答下列问题:小华从乙地返回后再经过___小时与小明相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学学习中,及时对知识进行归纳和整理是提高学习效率的重要方法,善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,对照图形,把相关知识归纳整理如下:

一次函数与方程(组)的关系:

1)一次函数的解析式就是一个二元一次方程;

2)点B的横坐标是方程kx+b=0的解;

3)点C的坐标(xy)中xy的值是方程组①的解.

一次函数与不等式的关系:

1)函数y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式kx+b0的解集;

2)函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式②的解集.

(一)请你根据以上归纳整理的内容在下面的数字序号后写出相应的结论:① ;②

(二)如果点B坐标为(20),C坐标为(13);

①直接写出kx+b≥k1x+b1的解集;

②求直线BC的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠AOB20°,∠AOC4AOBOD平分∠AOBOM平分∠AOC,则∠MOD的度数是_____________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了打造铁力旅游景点,市旅游局打算将依吉密河中一段长1800米的河道整治任务交由甲、乙两个工程队来完成.已知,甲工程队每天整治60米,乙工程队每天整治40米.

(1)若甲、乙两个工程队接龙来完成,共用时35天,求甲、乙两个工程队分别整治多长的河道?

(2)若乙工程队先整治河道10天,甲工程队再参加两个工程队一起来完成剩余河道整治任务,求整段河道整治任务共用时多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分别把下列各数填在所属的集合内:

+29,﹣380%,﹣10.30,﹣314156

1)正数集合:{_____…}

2)负数集合:{_____…}

3)整数集合:{_____…}

4)分数集合:{_____…}

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=x与反比例函数y=的图象交于A,B两点,且点A的横坐标为.在坐标轴上找一点C,直线AB上找一点D,在双曲线y=找一点E,若以O,C,D,E为顶点的四边形是有一组对角为60的菱形,那么符合条件点D的坐标为___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在锐角ABC中,ABC=45°,高线AD、BE相交于点F.

(1)判断BF与AC的数量关系并说明理由;

(2)如图2,将ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DEAM时,判断NE与AC的数量关系并说明理由.

【答案】(1)BF=AC,理由见解析;2NE=AC,理由见解析.

【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

试题解析:

1BF=AC,理由是:

如图1ADBCBEAC

∴∠ADB=AEF=90°

∵∠ABC=45°

∴△ABD是等腰直角三角形,

AD=BD

∵∠AFE=BFD

∴∠DAC=EBC

ADCBDF中,

∴△ADC≌△BDFAAS),

BF=AC

2NE=AC,理由是:

如图2,由折叠得:MD=DC

DEAM

AE=EC

BEAC

AB=BC

∴∠ABE=CBE

由(1)得:ADC≌△BDF

∵△ADC≌△ADM

∴△BDF≌△ADM

∴∠DBF=MAD

∵∠DBA=BAD=45°

∴∠DBA﹣DBF=BAD﹣MAD

即∠ABE=BAN

∵∠ANE=ABE+BAN=2ABE

NAE=2NAD=2CBE

∴∠ANE=NAE=45°

AE=EN

EN=AC

型】解答
束】
17

【题目】已知x1,x2是方程2x2﹣2nx+n(n+4)=0的两根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+ca≠0)的图象如下图所示,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步练习册答案