【题目】如图,已知A,B,且满足
(1)求A、B两点的坐标;
(2)点C在线段AB上,m、n满足n-m=5,点D在y轴负半轴上,连CD交x轴的负半轴于点M,且S△MBC=S△MOD,求点D的坐标;
(3)平移直线AB,交x轴正半轴于E,交y轴于F,P为直线EF上第三象限内的点,过P作PG⊥x轴于G,若S△PAB=20,且GE=12,求点P的坐标.
【答案】(1)A(0,4),B(-6,0);(2)D(0,-4);(3)P(-8,-8).
【解析】
(1)根据非负数的性质求得a、b的值即可;
(2)由S△BCM=S△DOM知S△ABO=S△ACD=12.连CO,作CE⊥y轴,CF⊥x轴,则S△ABO=S△ACO+S△BCO,据此列出方程组求得C(-3,2)而S△ACD=×CE×AD=12,易得OD=4,故D(0,-4);
(3)由S△PAB=S△EAB=20求得OE=4.由S△ABF=S△PBA=20求得OF=.结合S△PGE=S梯GPFO+S△OEF求得PG=8.所以P(-8,-8).
解:(1)∵|a-4|≥0,
∴.
∴a=4,b=-6.
∴A(0,4),B(-6,0);
(2)如图,
由S△BCM=S△DOM
∴S△ABO=S△ACD,
∵S△ABO=×AO×BO=12.
连CO,作CE⊥y轴于E,CF⊥x轴于F
S△ABO=S△ACO+S△BCO
即×6×n+×4×(-m)=12
∴,
∴
∴C(-3,2)
而S△ACD=×CE×AD
=×3×(4+OD)=12
∴OD=4,
∴D(0,-4);
(3)如图,
∵S△PAB=S△EAB=20,
∴AO×BE=20,即4×(6+OE)=40,
∴OE=4.
∴E(4,0).
∵GE=12,
∴GO=8.
∴G(-8,0).
∵S△ABF=S△PBA=20,
∴S△ABF=×BO×AF=×6×(4+OF)=20.
∴OF=.
∴F(0,-).
∵S△PGE=S梯GPFO+S△OEF
∴×12×PG=×(+PG)×8+×4×
∴PG=8
∴P(-8,-8).
科目:初中数学 来源: 题型:
【题目】如图,线段AB 是⊙O的直径,弦CD⊥AB于点H,点M是弧CBD 上任意一点,AH=2,CH=4.
(1)求⊙O 的半径r 的长度;
(2)求sin∠CMD;
(3)直线BM交直线CD于点E,直线MH交⊙O 于点 N,连接BN交CE于点 F,求HEHF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在ΔABC中,∠ABC的平分线与∠ACB的外角∠ACE的平分线相交于点D。
⑴.若∠ABC=60°,∠ACB=40°,求∠A和∠D的度数。
⑵.由⑴小题的计算结果,猜想,∠A和∠D有什么数量关系,并加以证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后,随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.
组别 | 正确字数x | 人数 |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | 20 |
根据以上信息解决下列问题:
(1)在统计表中,m=______,n=______,并补全直方图;
(2)扇形统计图中“C组”所对应的圆心角的度数是______度;
(3)若该校共有964名学生,如果听写正确的个数少于24个定为不合格,请你估算这所学校本次比赛听写不合格的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,我国某大使馆内有一单杠支架,支架高2.8 m,在大使办公楼前竖立着高28 m的旗杆,旗杆底部离大使办公楼墙根的垂直距离为17 m,在一个阳光灿烂的某一时刻,单杠支架的影长为2.24 m,大使办公室窗口离地面5 m,问此刻中华人民共和国国旗的影子是否能达到大使办公室的窗口?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向右平移5个单位长度,再向下平移3个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度)
(1)在图中画出平移后的△A1B1C1;
(2)直接写出△A1B1C1各顶点的坐标.
A1______,B1______,C1______.
(3)在x轴上找到一点M,当AM+A1M取最小值时,M点的坐标是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com