精英家教网 > 初中数学 > 题目详情

【题目】某大学公益组织计划购买两种的文具套装进行捐赠,关注留守儿童经洽谈,购买套装比购买套装多用20元,且购买5套装和4套装共需820元.

(1)求购买一套套装文具、一套套装各需要多少元?

(2)根据该公益组织的募捐情况和捐助对象情况,需购买两种套装共60套,要求购买两种套装的总费用不超过5240元,则购买套装最多多少套?

【答案】(1)购买一套套装需要100元,购买一套套装需要80元;(2)购买套装最多22套.

【解析】

(1)设购买一套套装需要元,购买一套套装凳需要元,根据套装比购买套装多用20元,且购买5套装和4套装共需820,即可得出关于的二元一次方程组,解之即可得出结论;

(2)设购买套装套,则购买套装套,根据购买两种套装的总费用不超过5240元列不等式即可得到结论.

解:(1)设购买一套套装需要元,购买一套套装凳需要元,

根据题意得:

解得:

答:购买一套套装需要100元,购买一套套装需要80元;

(2)设购买套装套,则购买套装套,根据题意得

解得:

∴购买套装最多22套,

答:要求购买两种套装的总费用不超过5240元,则购买套装最多22套.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABC为等边三角形,点DE分别在边ABAC上,AD=AE,连接DC,点MPN分别为DEDCBC的中点.

1)观察猜想

在如图中,线段PMPN的数量关系是______,∠MPN的度数是______

2)探究证明

ADE绕点A逆时针方向旋转到如图的位置,

①判断PMN的形状,并说明理由;

②求∠MPN的度数;

3)拓展延伸

ABC为直角三角形,∠BAC=90°AB=AC=12,点DE分别在边ABAC上,AD=AE=4,连接DC,点MPN分别为DEDCBC的中点.把ADE绕点A在平面内自由旋转,如图.

PMN的是______三角形.

②直接利用①中的结论,求PMN面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线AB AB 之间的距离为 2 CD 是直线两个动点(点 C D 点的左侧),且 AB=CD=5.连接 ACBCBD,将ABC 沿 BC 折叠得到A′BC.若以 A′CBD 为顶点的四边形为矩形,则此矩形相邻两边之和为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线的解析表达式为:y=-3x+3,且与x轴交于点D,直线经过点A,B,直线交于点C.

(1)求点D的坐标;

(2)求直线的解析表达式;

(3)求ADC的面积;

(4)在直线上存在异于点C的另一点P,使得ADP的面积是ADC面积的2倍,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)解方程:2x2﹣7x+6=0;

(2)已知关于x的方程x2+kx﹣2=0.

求证方程有两个不相等的实数根

若方程的一个根是﹣1,求另一个根及k

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABCD…的规律绕在ABCD的边上,则细线另一端所在位置的点的坐标是( )

A. (0,-2) B. (-1,-1) C. (-1,0) D. (1,-2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某餐厅中,一张桌子可坐6人,有如图所示的两种摆放方式:

(1)当有n张桌子时,两种摆放方式各能坐多少人?

(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌.若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(34),DOA的中点,点EAB上,当△CDE的周长最小时,点E的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BDBDE点,HBC中点,连接AHBDG点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④SGAD=S四边形GHCE;⑤CF=BD.正确的有(  )个.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步练习册答案