精英家教网 > 初中数学 > 题目详情

【题目】如图,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:
(1)如图①,求证:OB∥AC.
(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.求∠EOC的度数.
(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.

【答案】
(1)解:∵BC∥OA,

∴∠B+∠O=180°,

∴∠O=180°﹣∠B=80°,

而∠A=100°,

∴∠A+∠O=180°,

∴OB∥AC;


(2)解:∵OE平分∠BOF,

∴∠BOE=∠FOE= ∠BOF,

而∠FOC=∠AOC= ∠AOF,

∴∠EOC=∠EOF+∠COF= ∠AOB= ×80°=40°;


(3)解:不改变,

∵BC∥OA,

∴∠OCB=∠AOC,

∵∠FOC=∠AOC,

∴∠FOC=∠OCB,

∴∠OFB=∠FOC+∠OCB=2∠OCB,即∠OCB:∠OFB的值为1:2.


【解析】(1)由平行线的性质知∠O=180°﹣∠B=80°,结合∠A=100°得∠A+∠O=180°,即可得证;(2)由角平分线的性质可得;(3)由BC∥OA知∠OCB=∠AOC,结合∠FOC=∠AOC知∠FOC=∠OCB,从而得∠OFB=2∠OCB;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动,两点同时出发,当点Q运动到点O时,点P、Q停止运动.

(1)若点Q运动速度为2cm/秒,经过多长时间P、Q两点相遇?

(2)P在线段AB上且PA=3PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a.

1则第二边的边长为 ,第三边的边长为

2用含ab的式子表示这个三角形的周长,并化简;

3)若ab满足|a﹣5|+b﹣32=0,求出这个三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0)满足 +|b﹣2|=0.

(1)则C点的坐标为;A点的坐标为
(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.AC的中点D的坐标是(1,2),设运动时间为t(t>0)秒.问:是否存在这样的t,使SODP=SODQ?若存在,请求出t的值;若不存在,请说明理由
(3)点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中, 的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解下列方程组:

(1)

(2)

(3)

(4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列叙述中,不正确的个数有( ) ①所有的正数都是整数②|a|一定是正数 ③无限小数一定是无理数 ④(﹣2)3没有平方根 的平方根是±4
A.3个
B.4个
C.5个
D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列三行数

﹣3,9,﹣27,81,﹣243,……

﹣5,7,﹣29,79,﹣245,……

﹣1,3,﹣9,27,﹣81,……

第①行数排列律是_____;第②行数与第①行数的关系是_____;第③行数与第①行数的关系是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC是等腰三角形时,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则AEF的周长为(  )

A. 2cm B. 3 cm C. 4cm D. 3cm

查看答案和解析>>

同步练习册答案