【题目】已知在数轴上,一动点从原点出发,沿直线以每秒钟个单位长度的速度来回移动,其移动方式是先向右移动个单位长度,再向左移动个单位长度,又向右移动个单位长度,再向左移动个单位长度,又向右移动个单位长度…
(1)求出秒钟后动点所处的位置;
(2)如果在数轴上还有一个定点,且与原点相距20个单位长度,问:动点从原点出发,可能与点重合吗?若能,则第一次与点重合需多长时间?若不能,请说明理由.
【答案】(1)Q处于﹣2;(2)①当点A在原点左边时,时间=390秒(6.5分钟);②当点A原点左边时,时间=410秒 (6分钟).
【解析】
(1)先根据路程=速度×时间求出5秒钟走过的路程,然后根据左减右加列式计算即可得解;
(2)分点A在原点左边与右边两种情况分别求出动点走过的路程,然后根据时间=路程÷速度计算即可得解.
解:(1)∵2×5=10,
∴点Q走过的路程是1+2+3+4=10,Q处于:1﹣2+3﹣4=4﹣6=﹣2;
(2)①当点A在原点左边时,设需要第n次到达点A,则=20,解得n=39,
∴动点Q走过的路程是
1+|﹣2|+3+|﹣4|+5+…+|﹣38|+39,
=1+2+3+…+39,
==780,
∴时间=780÷2=390秒(6.5分钟);
②当点A原点左边时,设需要第n次到达点A,则=20,
解得n=40,
∴动点Q走过的路程是
1+|﹣2|+3+|﹣4|+5+…+39+|﹣40|,
=1+2+3+…+40,
==820,
∴时间=820÷2=410秒 (6分钟).
科目:初中数学 来源: 题型:
【题目】如图所示,在等边三角形ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).
(1)连接EF,当EF经过AC边的中点D时,求证:四边形AFCE是平行四边形;
(2)填空:①当t为 s时,四边形ACFE是菱形;②当t为 s时,△ACE的面积是△ACF的面积的2倍.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.
(1)求地面矩形AOBC的长;
(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.
(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;
(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;
(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知中,,点以每秒1个单位的速度从向运动,同时点以每秒2个单位的速度从向方向运动,到达点后,点也停止运动,设点运动的时间为秒.
(1)求点停止运动时,的长;
(2) 两点在运动过程中,点是点关于直线的对称点,是否存在时间,使四边形为菱形?若存在,求出此时的值;若不存在,请说明理由.
(3) 两点在运动过程中,求使与相似的时间的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律。则第(6)个图形中面积为1的正方形的个数为()
A. 20B. 25C. 35D. 27
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数轴上,点A向右移动1个单位得到点B,点B向右移动(n+1)(n为正整数)个单位得到点C,点A,B,C分别表示有理数a,b,c,
(1)当n=1时,
①点A,B,C三点在数轴上的位置如图所示,a,b,c三个数的乘积为正数,数轴上原点的位置可
A.在点A左侧或在A,B两点之间 B.在点C右侧或在A,B两点之间
C.在点A左侧或在B,C两点之间 D.在点C右侧或在B,C两点之间
②若这三个数的和与其中的一个数相等,求a的值;
(2)将点C向右移动(n+2)个单位得到点D,点D表示有理数d,a、b、c、d四个数的积为正数,这四个数的和与其中的两个数的和相等,且a为整数,请在数轴上标出点D并用含n的代数式表示a.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求1+2+22+23+…+22018的值,可令S=1+2+22+23+…+22018,则2S=2+22+23+24+…22019,因此2S﹣S=22019﹣1,即S=22019﹣1.依照以上的方法,计算出1+5+52+53+…52017的值为( )
A. 52018﹣1 B. 52019﹣1 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一数轴上存在两动点,当第一次相遇后,速度都变为原来的两倍,第二次相遇后又都能恢复到原来的速度,则称这条数轴为魔幻数轴.
如图,已知一魔幻数轴上有A,O,B三点,其中A,O对应的数分别为﹣10,0,AB为47个单位长度,甲,乙分别从A,O两点同时出发,沿数轴正方向同向而行,甲的速度为3个单位/秒,乙的速度为1个单位/秒,甲到达点B后以当时速度立即返回,当甲回到点A时,甲、乙同时停止运动.
问:(1)点B对应的数为 ,甲出发 秒后追上乙(即第一次相遇)
(2)当甲到达点B立即返回后第二次与乙相遇,求出相遇点在数轴上表示的数是多少?
(3)甲、乙同时出发多少秒后,二者相距2个单位长度?(请直接写出答案)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com