精英家教网 > 初中数学 > 题目详情

【题目】ABC中,ACBC,∠ACB90°,点DAB上,点EBC上,且ADBEBDAC,连DECD

(1)找出图中全等图形,并证明;

(2)求∠ACD的度数;

【答案】(1)ADC≌△BED,证明见解析;(2)ACD22.5°.

【解析】

1)由“SAS”可证△ADC≌△BED

2)由全等三角形的性质可得∠ACD=∠BDECDDE,由外角性质和等腰三角形的性质可求∠DCE67.5°,即可求解.

(1)△ADC≌△BED

理由如下:∵ACBC∠ACB90°

∴∠A∠B45°,且ADBEBDAC

∴△ADC≌△BED(SAS)

(2)∵△ADC≌△BED

∴∠ACD∠BDECDDE

∵∠BDC∠A+∠ACD∠CDE+∠BDE

∴∠CDE∠A45°,且DCDE

∴∠DCE67.5°

∴∠ACD∠ACB∠DCE22.5°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,反比例函数的图象经过点

(1)求代数式mn的值;

(2)若二次函数的图象经过点B,求代数式的值;

(3)若反比例函数的图象与二次函数的图象只有一个交点,且该交点在直线的下方,结合函数图象,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.

1)第一批饮料进货单价多少元?

2)若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点P是等边三角形ABC内的一点,且PA=6PB=8PC=10,若将PAC绕点A逆时针旋转后,得到P′AB,则APB等于(

A150° B105° C120° D90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C

(1)m的值及C点坐标;

(2)在直线BC上方的抛物线上是否存在一点M,使得它与BC两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由

(3)P为抛物线上一点,它关于直线BC的对称点为Q当四边形PBQC为菱形时,求点P的坐标(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,4张背面完全相同的纸牌(用表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.

(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;

(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在长方形纸片ABCD中,点E是边CD上的一点,将AED沿AE所在的直线折叠,使点D落在点F处.

1)如图1,若点F落在对角线AC上,且∠BAC54°,则∠DAE的度数为  °

2)如图2,若点F落在边BC上,且AB6AD10,求CE的长.

3)如图3,若点ECD的中点,AF的沿长线交BC于点G,且AB6AD10,求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 A 时测得某树(垂直于地面)的影长为 4 B 时又测得该树的影长为 16 若两次日 照的光线互相垂直则树的高度为_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校与图书馆在冋一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达日的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.

1)根据图象信息,当t   分钟时甲乙两人相遇,乙的速度为   /分钟;

2)求点A的坐标.

查看答案和解析>>

同步练习册答案