【题目】△ABC中,AC=BC,∠ACB=90°,点D在AB上,点E在BC上,且AD=BE,BD=AC,连DE、CD.
(1)找出图中全等图形,并证明;
(2)求∠ACD的度数;
【答案】(1)△ADC≌△BED,证明见解析;(2)∠ACD=22.5°.
【解析】
(1)由“SAS”可证△ADC≌△BED;
(2)由全等三角形的性质可得∠ACD=∠BDE,CD=DE,由外角性质和等腰三角形的性质可求∠DCE=67.5°,即可求解.
(1)△ADC≌△BED,
理由如下:∵AC=BC,∠ACB=90°,
∴∠A=∠B=45°,且AD=BE,BD=AC,
∴△ADC≌△BED(SAS)
(2)∵△ADC≌△BED,
∴∠ACD=∠BDE,CD=DE,
∵∠BDC=∠A+∠ACD=∠CDE+∠BDE,
∴∠CDE=∠A=45°,且DC=DE,
∴∠DCE=67.5°,
∴∠ACD=∠ACB﹣∠DCE=22.5°.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,反比例函数的图象经过点,.
(1)求代数式mn的值;
(2)若二次函数的图象经过点B,求代数式的值;
(3)若反比例函数的图象与二次函数的图象只有一个交点,且该交点在直线的下方,结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点P是等边三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后,得到△P′AB,则∠APB等于( )
A.150° B.105° C.120° D.90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点
(1)求m的值及C点坐标;
(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由
(3)P为抛物线上一点,它关于直线BC的对称点为Q,当四边形PBQC为菱形时,求点P的坐标(直接写出答案);
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,4张背面完全相同的纸牌(用①、②、③、④表示),在纸牌的正面分别写有四个不同的条件,小明将这4张纸牌背面朝上洗匀后,先随机摸出一张(不放回),再随机摸出一张.
(1)用树状图(或列表法)表示两次摸牌出现的所有可能结果;
(2)以两次摸出牌上的结果为条件,求能判断四边形ABCD是平行四边形的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.
(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为 °.
(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.
(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 A 时测得某树(垂直于地面)的影长为 4 米,B 时又测得该树的影长为 16 米,若两次日 照的光线互相垂直,则树的高度为_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校与图书馆在冋一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达日的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.
(1)根据图象信息,当t= 分钟时甲乙两人相遇,乙的速度为 米/分钟;
(2)求点A的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com