【题目】矩形中, ,以为边向上作正, 、分别交于、, ,两动点、运动速度分别为4、 ().
(1)的长为 ;
(2)若点从出发沿线段向运动,同时点从出发沿线段向点运动,设运动时间为,在运动过程中,以、、为顶点的三角形和以、、为顶点的三角形全等,求的运动速度;
(3)若点以(2)中的速度从点出发,同时点以原来的速度从点出发,逆时针沿四边形运动.问、会不会相遇?若不相遇,说明理由.若相遇,请求出经过多长时间、第一次在四边形的何处相遇?
【答案】(1)AF=10cm;(2)或4cm\s;(3)5圈又运动了22cm后在BG边距点B 4cm处与点Q相遇.
【解析】试题分析:(1)先由△ABE是等边三角形,DF=5cm,求出FG的长,再由△EFG∽△EAB,对应边成比例求出AF的长;(2)先表示出AP、PB长,再由△AFP≌△BQP或△AFP≌△BPQ,
对应边相等列出方程解即可得到答案;(3)当Q的速度为V=4cm\s时,点P的速度也为4cm\s ,两点同向同速, 此时P,Q不会相遇;当Q的速度为V=时设经过xsP、第一次相遇,根据题意得: ,即可得到经过63sP、第一次相遇.
试题解析:(1)∵△ABE是等边三角形,DF=5cm,
∴CG=5cm,∴FG=18-5-5=8cm,
∵FG∥AB,
△EFG∽△EAB,
∴,即,
∴AF=10cm
(2)又题意得:AP=4t,PB=18-4t
①当△AFP≌△BPQ时,PB=AF 即:18-4t=10 ∴t=2s,此时:AP=4t=8cm=BQ,2V=8 ∴V=4cm\s
②当△AFP≌△BQP时,AF=BQ ,AP=PB,即:4t=18-4t
解得:t= , 解得:V=
(3)解:①当Q的速度为V=4cm\s时,因为点P的速度也为4cm\s ∴P,Q不会相遇
②当点Q的速度为V=时,∵>4cm\s
∴点Q能追上点P
设:追上的时间为xs.又∵P,Q沿逆时针运动,Q 、P距离为28cm,
根据题意得: 解得:x=63s
又∵P的速度为4cm\s,∴P运动63s共走了:
而P从A出发逆时针,沿四边形ABGF的边运动,转一圈为46cm
∵46×5+22=252
∴P在沿四边形ABGF的边逆时针运动了5圈又运动了22cm后在BG边距点B 4cm处与点Q相遇(或距离点G6cm处与点Q相遇)
科目:初中数学 来源: 题型:
【题目】根据衢州市统计局发布的统计数据显示,衢州市2017年全市生产总值为138000000000元,按可比价格计算,比上年增长7.3%,数据138000000000元用科学记数法表示为( )
A. 1.38×1010元 B. 1.38×1011元 C. 1.38×1012元 D. 0.138×1012元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,然后解答后面的问题。
我们知道方程有无数组解,但在实际生活中我们往往只需要求出其正整数解。例:由,得,( 、为正整数)
则有.又为正整数,则为整数.
由2与3互质,可知: 为3的倍数,从而,代入.
的正整数解为
问题:(1)若为自然数,则满足条件的值有_____________个
(2)请你写出方程的所有正整数解:_________________________
(3)若,请用含的式子表示,并求出它的所有整数解。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:
(1)求张强返回时的速度;
(2)妈妈比按原速返回提前多少分钟到家?
(3)请直接写出张强与妈妈何时相距1200米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近1100000000 美元税收,其中1100000000 用科学记数法表示应为( )
A. 0.11108B. 1.11010C. 1.1109D. 11108
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com