精英家教网 > 初中数学 > 题目详情

二次函数y=ax2+bx+c的图象如图所示,则下列结论:①abc<0,②b2-4ac>0,③2a+b>0,④a+b+c<0,⑤ax2+bx+c=-2的解为x=0,其中正确的有________.

②③④
分析:由抛物线开口向上,得到a大于0,再由对称轴在y轴右侧得到a与b异号,可得出b小于,由抛物线与y轴交于负半轴,得到c小于0,可得出abc大于0,判断出选项①错误;由抛物线与x轴交于两点,得到根的判别式大于0;利用对称轴公式表示出对称轴,由图象得到对称轴小于1,再由a大于0,利用不等式的基本性质变形即可得到2a+b的正负;由图象可得出当x=1时对应二次函数图象上的点在x轴下方,即将x=1代入二次函数解析式,得到a+b+c的正负;由图象可得出方程ax2+bx+c=-2的解有两个,不只是x=0,选项⑤错误.
解答:∵抛物线开口向上,对称轴在y轴右侧,且抛物线与y轴交于负半轴,
∴a>0,b<0,c<0,
∴abc>0,故选项①错误;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,故选项②正确;
∵对称轴为直线x=-<1,且a>0,
∴2a+b>0,故选项③正确;
由图象可得:当x=1时,对应的函数图象上的点在x轴下方,
∴将x=1代入得:y=a+b+c<0,故选项④正确;
由图象可得:方程ax2+bx+c=-2有两解,其中一个为x=0,故选项⑤错误,
综上,正确的选项有:②③④.
故答案为:②③④
点评:此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符合由抛物线的开口方向决定;b的符合由a的符合与对称轴的位置确定;c的符合由抛物线与y轴交点的位置确定;抛物线与x轴交点的个数决定了b2-4ac的与0的关系;此外还有注意对于x=1、-1、2等特殊点对应函数值正负的判断.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴交于精英家教网点C(0,
3
)
,当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC、BC.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数y=ax2+bx+c,当x=
12
时,有最大值25,而方程ax2+bx+c=0的两根α、β,满足α33=19,求a、b、c.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果二次函数y=ax2+bx+c的图象的顶点坐标是(2,4),且直线y=x+4依次与y轴和抛物线相交于P、Q、R三点,PQ:QR=1:3,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①abc>0;②2a+b=0;③a+b+c>0;④当-1<x<3时,y>0.其中正确结论的序号是
②③④
②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•孝感)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:
①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<3时,y>0.
其中正确的是
①②③
①②③
(把正确的序号都填上).

查看答案和解析>>

同步练习册答案