精英家教网 > 初中数学 > 题目详情

【题目】如图,点在双曲线上,点在双曲线上,轴,过点轴于,连接,与相交于点,若,则的值为__________

【答案】18

【解析】

过点BBEx轴于E,延长线段BA,交y轴于F,得出四边形AFOD是矩形,四边形OEBF是矩形,得出S矩形AFOD=6S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OD,即OE=3OD,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.

解:过点BBEx轴于E,延长线段BA,交y轴于F

ABx轴,

AFy轴,

∴四边形AFOD是矩形,四边形OEBF是矩形,

AF=ODBF=OE

AB=DE

∵点A在双曲线y=上,

S矩形AFOD=6

同理S矩形OEBF=k

ABOD

OD:AB=CD:AC=1:2

AB=2OD

DE=2OD

OE=3OD

S矩形OEBF=3S矩形AFOD=18

k=18

故答案是:18

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.

(1)当PEAB,PFBC时,如图1,则的值为   

(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;

(3)在(2)的基础上继续旋转,当60°<α<90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,OBD中点,以BC为边向正方形内作等边BCE,连接AE并延长交CDF,连接BD分别交CEAFGH,下列结论:①;②;③;④;⑤,其中正确的是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,是⊙O的直径,弦垂直平分,垂足为,连接

1)如图1,求的度数;

2)如图2,点分别为上一点,并且,连接,交点为GR上一点,连接交于点H,,求证:

3)如图3,在(2)的条件下,,求⊙O半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一款雷达式懒人椅.当懒人椅完全展开时,其侧面示意图如图2所示,金属杆ABCD在点O处连接,且分别与金属杆EF在点BD处连接.金属杆CDOD部分可以伸缩(即OD的长度可变).已知OA50cmOB20cmOC30cmDEBF5cm.当把懒人椅完全叠合时,金属杆ABCDEF重合在一条直线上(如图3所示),此时点E和点A重合.

1)如图2,已知∠BOD6ODB,∠OBF140°

①求∠AOC的度数.

②求点AC之间的距离.

2)如图3,当懒人椅完全叠合时,求CFCD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:的内接三角形,,过点的切线交的延长线于点

1)求证:

2)如果的半径为2,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,作出如图所示的统计图和统计表请根据图表信息,解答下列问题:

1)在表中:m=  n=   ;在图中补全频数分布直方图;

2)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在   组;

34个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中AC两组学生的概率是多少?请用列表法或画树状图法说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在RtABC中,∠C=90°,AC=BC=,直线L过AB中点O,过点A、C分别向直线L作垂线,垂足分别为E、F.若CF=1,则EF=__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线yx与双曲线yk0)的一个交点为Pn).将直线向上平移b00)个单位长度后,与x轴,y轴分别交于点A,点B,与双曲线的一个交点为Q.若AQ3AB,则b____

查看答案和解析>>

同步练习册答案