【题目】“垃圾分类”越来越受到人们的关注,我市某中学对部分学生就“垃圾分类”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:
(1)接受问卷调查的学生共有 人,条形统计图中的值为 ;
(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为 ;
(3)若从对垃圾分类知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加垃圾分类知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣x2+bx+c经过点C(0,3),与x轴交于A,B两点,点A(﹣1,0).
(I)求该抛物线的解析式;
(Ⅱ)D为抛物线对称轴上一点,当△ACD的周长最小时,求点D的坐标;
(Ⅲ)在抛物线上是否存在一点P,使CP恰好将以A,B,C,P为顶点的四边形的面积分为相等的两部分?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,AC交DE于点F.
(1)求证:AC2=ABAD;
(2)求证:CE∥AD;
(3)若AD=5,AB=6,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在解方程(x2﹣2x)2﹣2(x2﹣2x)-3=0时,设x2﹣2x=y,则原方程可转化为y2﹣2y-3=0,解得y1=-1,y2=3,所以x2﹣2x=-1或x2﹣2x=3,可得x1=x2=1,x3=3,x4=-1.我们把这种解方程的方法叫做换元法.对于方程:x2+﹣3x﹣=12,我们也可以类似用换元法设x+ =y,将原方程转化为一元二次方程,再进一步解得结果,那么换元得到的一元二次方程式是( )
A.y2﹣3y﹣12=0B.y2+y﹣8=0
C.y2﹣3y﹣14=0D.y2﹣3y﹣10=0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1) 知识储备
①如图 1,已知点 P 为等边△ABC 外接圆的弧BC 上任意一点.求证:PB+PC= PA.
②定义:在△ABC 所在平面上存在一点 P,使它到三角形三顶点的距离之和最小,则称点 P 为△ABC
的费马点,此时 PA+PB+PC 的值为△ABC 的费马距离.
(2)知识迁移
①我们有如下探寻△ABC (其中∠A,∠B,∠C 均小于 120°)的费马点和费马距离的方法:
如图 2,在△ABC 的外部以 BC 为边长作等边△BCD 及其外接圆,根据(1)的结论,易知线段____的长度即为△ABC 的费马距离.
②在图 3 中,用不同于图 2 的方法作出△ABC 的费马点 P(要求尺规作图).
(3)知识应用
①判断题(正确的打√,错误的打×):
ⅰ.任意三角形的费马点有且只有一个(__________);
ⅱ.任意三角形的费马点一定在三角形的内部(__________).
②已知正方形 ABCD,P 是正方形内部一点,且 PA+PB+PC 的最小值为,求正方形 ABCD 的
边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国贸商店服装柜在销售中发现:“宝乐牌”童装平均每天可以售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经调查发现:每件童装每降价1元,商场平均每天可多销售2件.
(1)若每件童装降价5元,则商场盈利多少元?
(2)若商场每天要想盈利1200元,请你帮助商场算一算,每件童装应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm,点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为lcm/s.连接PQ,设运动时间为t(s)(0<t<4).
(1)当t为何值时,PQ⊥AC?
(2)设△APQ的面积为S,求S与t的函数关系式,并求出当t为何值时,S取得最大值?S的最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在长方形中,=,=,点从点开始沿边向终点以的速度移动,与此同时,点从点开始沿边向终点以的速度移动.如果、分别从、同时出发,当点运动到点时,两点停止运动.设运动时间为秒.
(1)填空:______=______,______=______(用含t的代数式表示);
(2)当为何值时,的长度等于?
(3)是否存在
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD内一点E连接BE、CE,过C作CF⊥CE与BE延长线交于点F,连接DF、DE.CE=CF=1,DE=,下列结论中:①△CBE≌△CDF;②BF⊥DF;③点D到CF的距离为2;④S四边形DECF=+1.其中正确结论的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com