【题目】近年来,移动支付已成为主要支付方式之一.为了解某校800名学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
下面有四个推断:
①从全校学生中随机抽取1人,该学生上个月仅使用A支付的概率为0.3;
②从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率为0.45;
③估计全校仅使用B支付的学生人数为200人;
④这100名学生中,上个月仅使用A和仅使用B支付的学生支付金额的中位数为800元.
其中合理推断的序号是( )
A.①②B.①③C.①④D.②③
科目:初中数学 来源: 题型:
【题目】如图,抛物线过点,交x轴于A,B两点点A在点B的左侧.
求抛物线的解析式,并写出顶点M的坐标;
连接OC,CM,求的值;
若点P在抛物线的对称轴上,连接BP,CP,BM,当时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC是等边三角形,AD⊥BC于点D,点E是直线AD上的动点,将BE绕点B顺时针方向旋转60°得到BF,连接EF、CF、AF.
(1)如图1,当点E在线段AD上时,猜想∠AFC和∠FAC的数量关系;(直接写出结果)
(2)如图2,当点E在线段AD的延长线上时,(1)中的结论还成立吗?若成立,请证明你的结论,若不成立,请写出你的结论,并证明你的结论;
(3)点E在直线AD上运动,当△ACF是等腰直角三角形时,请直接写出∠EBC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MON=60°,OF平分∠MON,点A在射线OM上, P,Q是射线ON上的两动点,点P在点Q的左侧,且PQ=OA,作线段OQ的垂直平分线,分别交OM,OF,ON于点D,B,C,连接AB,PB.
(1)依题意补全图形;
(2)判断线段 AB,PB之间的数量关系,并证明;
(3)连接AP,设,当P和Q两点都在射线ON上移动时,是否存在最小值?若存在,请直接写出的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.
(1)求证:△APM≌△BPN;
(2)当MN=2BN时,求α的度数;
(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为“节能减排,保护环境”,某村计划建造A、B两种型号的沼气池共20个,以解决所有农户的燃料问题.据市场调查:建造A、B两种型号的沼气池各1个,共需费用5万元;建造A型号的沼气池3个,B种型号的沼气池4个,共需费用18万元.
(1)求建造A、B两种型号的沼气池造价分别是多少?
(2)设建造A型沼气池x个,总费用为y万元,求y与x之间的函数关系式;若要使投入总费用不超过52万元,至少要建造A型沼气池多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线.
(1)当时,
①抛物线的对称轴为________;
②若在抛物线上有两点,且,则的取值范围是________;
(2)抛物线的对称轴与轴交于点,点与点关于轴对称,将点向右平移3个单位得到点,若抛物线与线段恰有一个公共点,结合图象,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com