分析 连接AD,利用等积法可得到AB•DE+AC•DF=AB•CH,可证得结论.
解答 证明:
如图,连接AD,![]()
∵DE⊥AB,DF⊥AC,CH⊥AB,
∴S△ABD=$\frac{1}{2}$AB•DE,S△ACD=$\frac{1}{2}$AC•DF,S△ABC=$\frac{1}{2}$AB•CH,
∵S△ABD+S△ACD=S△ABC,
∴$\frac{1}{2}$AB•DE+$\frac{1}{2}$AC•DF=$\frac{1}{2}$AB•CH,
∵AB=AC,
∴DE+DF=CH.
点评 本题主要考查等积法的应用,掌握等积法是解题的关键,即从不同的角度表示同一个图形的面积,从而可得到有关线段之间的关系.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com