精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC,AB=AC,DBC边的中点,BE平分∠ABC,ADE,F△ABC外一点,∠ACF=∠ACB,BE=CF,

(1)求证:∠BAF=3∠BAD

(2)若DE=5,AE=13,求线段AB的长.

【答案】(1)详见解析;(2)19.5.

【解析】

(1)由角平分线得∠ABE=∠ACF,证明△ABE≌△ACF(SAS)得∠BAE=∠CAF,根据三线合一性质得∠BAE=∠DAC=∠CAF,即可解题,

(2)根据角平分线性质得DE=EH=5,在Rt△AEH中,勾股定理得AH=12,BD=BH=aRt△ABD,勾股定理求BH=7.5,即可解题.

(1)AB=AC

∠ABC=∠ACB

BE平分∠ABC

∠ABE=∠ABC

∠ACF=∠ACB

∠ABE=∠ACF

BE=CF

△ABE≌△ACF

∴∠BAE=∠CAF

AB=AC,DBC中点

∠BAD=∠CAD

∴∠BAF=3∠BAD

(2)过EEH⊥ABH

AB=AC,DBC中点

AD⊥BC

BE平分∠ABC,

∴DE=EH=5

∴Rt△AEH中,AH=

∠BHE=∠BDE=90°,DE=EH,BE=BE

△BDE≌△BEH

BD=BH

BD=BH=a

Rt△ABD,

解得a=7.5

AB=AH+BH=7.5+12=19.5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°, ∠ABC=60°,BD平分∠ABC,AD=6,AC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,BEGF,∠1=∠3,∠DBC=70°,求∠EDB的大小.

阅读下面的解答过程,并填空(理由或数学式)

解:∵BEGF(已知)

∴∠2=∠3(   )

∵∠1=∠3(   )

∴∠1=(   )(   )

DE∥(   )(   )

∴∠EDB+∠DBC=180°(   )

∴∠EDB=180°﹣∠DBC(等式性质)

∵∠DBC=(   )(已知)

∴∠EDB=180°﹣70°=110°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.

(1)乙队单独完成这项工程需要多少天?

(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于O点,OECD,OC平分∠AOF,EOF=56°,

(1)求∠BOD的度数;

(2)写出图中所有与∠BOE互余的角,它们分别是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下列推理过程:

已知:如图,∠1+2=180°,3=B

求证:∠EDG+DGC=180°

证明:∵∠1+2=180°(已知)

1+DFE=180°(   

∴∠2=      

EFAB(   

∴∠3=      

又∵∠3=B(已知)

∴∠B=ADE(   

DEBC(   

∴∠EDG+DGC=180°(   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场家电销售部有营业员20名,为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售额目标,根据目标完成情况对营业员进行适当的奖惩.为此,商场统计了这20名营业员在某月的销售额,数据如下:(单位:万元)

25 26 21 17 28 26 20 25 26 30

20 21 20 26 30 25 21 19 28 26

(1)请根据以上信息完成下表:

销售额(万元)

17

19

20

21

25

26

28

30

频数(人数)

1

1

3

3

(2)上述数据中,众数是 万元,中位数是 万元,平均数是 万元;

(3)如果将众数作为月销售额目标,能否让至少一半的营业员都能达到目标?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料: 某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,…,按照以上方式不断循环.
小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y是时间x的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.
下面是小明的探究过程,请补充完整:
(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况

接通电源后的时间x
(单位:min)

0

1

2

3

4

5

8

10

16

18

20

21

24

32

水箱中水的温度y
(单位:℃)

20

35

50

65

80

64

40

32

20

m

80

64

40

20

m的值为
(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式; 当4<x≤16时,写出一个符合表中数据的函数解析式
②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:
(3)如果水温y随时间x的变化规律不变,预测水温第8次达到40℃时,距离接通电源min.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义一种对正整数n的“C运算”:①当n为奇数时,结果为3n1;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行.例如,n66时,其“C运算”如下

n26,则第2019次“C运算”的结果是

A. 40 B. 5 C. 4 D. 1

查看答案和解析>>

同步练习册答案